Câu hỏi:

21/10/2024 398

Một bể cá hình lập phương có sức chứa \[1\,\,000{\rm{ d}}{{\rm{m}}^{\rm{3}}}\]. Muốn tăng sức chứa của bể lên 10 lần (giữ nguyên hình dạng lập phương) thì phải tăng chiều dài của mỗi cạnh lên (làm tròn đến chữ số hàng đơn vị)

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Bể cá hình lập phương có sức chứa \[1\,\,000{\rm{ d}}{{\rm{m}}^{\rm{3}}}\] nghĩa là thể tích của bể cá là \[1\,\,000{\rm{ d}}{{\rm{m}}^{\rm{3}}}\].

Độ dài mỗi cạnh của hình lập phương ban đầu là:

\(\sqrt[3]{{1000}} = \sqrt[3]{{{{10}^3}}} = 10\) (dm)

Sức chứa (hay thể tích) của bể sau khi tăng lên 10 lần là:

\[1\,\,000.10 = 1\,\,0000\](dm3).

Độ dài mỗi cạnh của hình lập phương sau khi tăng sức chứa lên 10 lần là:

\[\sqrt[3]{{10\,\,000}} \approx 21,5\] (dm)

Khi đó, phải tăng chiều dài của mỗi cạnh lên:

\(\frac{{21,5}}{{10}} = 2,15\) (lần)

Vậy muốn tăng sức chứa của bể lên 10 lần (giữ nguyên hình dạng lập phương) thì phải tăng chiều dài của mỗi cạnh lên khoảng 2,15 lần.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Khẳng định nào sau đây đúng?

Xem đáp án » 21/10/2024 203

Câu 2:

Biểu thức \(\sqrt[3]{{{x^3}}},x > 0\) bằng

Xem đáp án » 21/10/2024 171

Câu 3:

Rút gọn biểu thức \(\sqrt[3]{{125{x^3} + 75{x^2} + 15x + 1}} - 5x\) ta được

Xem đáp án » 21/10/2024 132

Câu 4:

Cho hai biểu thức:

\(M = \sqrt[3]{{{{\left( {17\sqrt 5 + 38} \right)}^3}}} - \sqrt[3]{{{{\left( {17\sqrt 5 - 38} \right)}^3}}}\) và \(N = \sqrt[3]{{{{\left( {17\sqrt 5 - 38} \right)}^3}}} - \sqrt[3]{{{{\left( {17\sqrt 5 + 38} \right)}^3}}}\).

Khẳng định đúng trong các khẳng định sau là

Xem đáp án » 21/10/2024 121

Câu 5:

Giá trị biểu thức \(5\sqrt {144} - \sqrt[3]{{125}} + 7\) là

Xem đáp án » 21/10/2024 113

Câu 6:

Giá trị của \[x\] để biểu thức \(\sqrt[3]{{\frac{{ - 2}}{{x - 1}}}}\) có nghĩa là

Xem đáp án » 21/10/2024 108

Bình luận


Bình luận