Cho hàm số y = f(x) = ax2 (a ≠ 0).
a) Chứng tỏ rằng nếu (x0; y0) là một điểm thuộc đồ thị hàm số thì điểm (–x0; y0) cũng nằm trên đồ thị hàm số đó.
b) Chứng minh rằng f(–x) = f(x) với mọi x thuộc ℝ.
Cho hàm số y = f(x) = ax2 (a ≠ 0).
a) Chứng tỏ rằng nếu (x0; y0) là một điểm thuộc đồ thị hàm số thì điểm (–x0; y0) cũng nằm trên đồ thị hàm số đó.
b) Chứng minh rằng f(–x) = f(x) với mọi x thuộc ℝ.
Quảng cáo
Trả lời:
a) Giả sử (x0; y0) là một điểm thuộc đồ thị hàm số y = f(x) = ax2 (a ≠ 0).
Khi đó ta có: y0 = ax02.
Mà y0 = ax02 = a(–x0)2 nên điểm (–x0; y0) cũng nằm trên đồ thị hàm số đó.
b) Với mọi x thuộc ℝ, ta có:
F(–x) = a(–x)2 = ax2 = f(x).
Do đó f(–x) = f(x) với mọi x thuộc ℝ. (đpcm)
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trên mặt phẳng Oxy, ta vẽ đường thẳng (d): y = x – 2 và parabol (P): y= –x2 như hình dưới đây:

Nhìn vào đồ thị, giao điểm của (d) và (P) là hai điểm A(–2; 4) và B(1; –1).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.