Câu hỏi:

17/12/2024 810

Hai vòi nước chảy vào một bể cạn thì sau 1 giờ 12 phút sẽ đầy. Nếu mở vòi thứ nhất trong 12 phút và vòi thứ hai trong 15 phút thì được \(\frac{{11}}{{60}}\) bể. Hỏi nếu vòi thứ hai chảy một mình thì sau bao lâu đầy bể?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Đổi 1 giờ 12 phút = \(\frac{6}{5}\) giờ, 12 phút = \(\frac{1}{5}\) giờ, 15 phút = \(\frac{1}{4}\) giờ.

Gọi thời gian vòi thứ nhất và vòi thứ hai chảy một mình đầy bể là x, y (x, y > \(\frac{6}{5}\), giờ).

Trong 1 giờ vòi thứ nhất chảy được \(\frac{1}{x}\) bể, vòi thứ hai làm được \(\frac{1}{y}\) bể.

Hai vòi cùng chảy vào một bể thì sau \(\frac{6}{5}\) giờ đầy nên ta có:

\(\frac{1}{x} + \frac{1}{y} = \frac{5}{6}\) (1)

Nếu mở vòi thứ nhất trong 12 phút và vòi thứ hai trong 15 phút thì được \(\frac{{11}}{{60}}\) bể nên ta có phương trình:

\(\frac{1}{{5x}} + \frac{1}{{4y}} = \frac{{11}}{{60}}\) (2)

Từ (1) và (2) ta có hệ phương trình: \(\left\{ \begin{array}{l}\frac{1}{x} + \frac{1}{y} = \frac{5}{6}\\\frac{1}{{5x}} + \frac{1}{{4y}} = \frac{{11}}{{60}}\end{array} \right.\)

Suy ra \(\left\{ \begin{array}{l}\frac{1}{{5x}} + \frac{1}{{5y}} = \frac{1}{6}\\\frac{1}{{5x}} + \frac{1}{{4y}} = \frac{{11}}{{60}}\end{array} \right.\) do đó \(\left\{ \begin{array}{l}\frac{1}{{20y}} = \frac{1}{{60}}\\\frac{1}{{5x}} + \frac{1}{{4y}} = \frac{{11}}{{60}}\end{array} \right.\)

Suy ra y = 3 và x = 2 (thỏa mãn)

Vậy nếu vòi thứ hai chảy một mình thì sau 3 giờ sẽ đầy bể.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi x, y lần lượt là số ngày để đổi I và đội II hoàn thành công việc nếu làm riêng một mình (x, y > 0).

Mỗi ngày đội I làm được \(\frac{1}{x}\) (công việc) và đội II làm được \(\frac{1}{y}\) (công việc).

Mỗi ngày đội I làm được nhiều gấp rưỡi đội II nên ta có phương trình \(\frac{1}{x}\) = 1,5.\(\frac{1}{y}\) hay

\(\frac{1}{x}\) = \(\frac{3}{2}.\frac{1}{y}\) (1).

Hai đội làm chung trong 24 ngày thì xong công việc nên mỗi ngày, hai đội làm chung được \(\frac{1}{{24}}\) (công việc). Ta có phương trình: \(\frac{1}{x} + \frac{1}{y} = \frac{1}{{24}}\) (2).

Từ (1) và (2) ta có hệ phương trình \(\left\{ \begin{array}{l}\frac{1}{x} = \frac{3}{2}.\frac{1}{y}\\\frac{1}{x} + \frac{1}{y} = \frac{1}{{24}}\end{array} \right.\)

Đặt u = \(\frac{1}{x}\) và v = \(\frac{1}{y}\) thì ta có hệ phương trình bậc nhất hai ẩn mới là u và v như sau:

\(\left\{ \begin{array}{l}u = \frac{3}{2}v\\u + v = \frac{1}{{24}}\end{array} \right.\)

Thế u = \(\frac{3}{2}\)v vào phương trình u + v = \(\frac{1}{{24}}\) được \(\frac{3}{2}\)v + v = \(\frac{1}{{24}}\) hay \(\frac{5}{2}\)v = \(\frac{1}{{24}}\) suy ra

v = \(\frac{1}{{60}}\).

Do đó, u = \(\frac{3}{2}\)v = \(\frac{3}{2}\).\(\frac{1}{{60}}\) = \(\frac{1}{{40}}\).

Từ đó, ta có: u = \(\frac{1}{x}\) = \(\frac{1}{{40}}\) suy ra u = 40; v = \(\frac{1}{y}\) = \(\frac{1}{{60}}\) suy ra y = 60.

Các giá trị tìm được của x và y đều thỏa mãn điều kiện.

Vậy nếu làm một mình thì đội I làm xong đoạn đường đó trong 40 ngày, còn đội II làm xong trong 60 ngày.

Lời giải

Đáp án đúng là: C

Đổi 1 giờ 30 phút = 90 phút.

Gọi thời gian vòi thứ nhất và vòi thứ hai chảy một mình đầy bể là x, y (x, y > 90, phút).

Trong 1 phút vòi thứ nhất chảy được \(\frac{1}{x}\) bể, vòi thứ hai làm được \(\frac{1}{y}\) bể.

Nếu hai vòi nước cùng chảy vào một bể không có nước thì bể sẽ đầy 90 phút nên ta có phương trình: \(90.\frac{1}{x} + 90.\frac{1}{y} = 1\) hay \(\frac{1}{x} + \frac{1}{y} = \frac{1}{{90}}\) (1).

Nếu mở riêng vòi I trong 15 phút và vòi II trong 20 phút thì chỉ được \(\frac{1}{5}\) nên ta có phương trình: \(\frac{{15}}{x} + \frac{{20}}{y} = \frac{1}{5}\) (2)

Từ (1) và (2) ta có hệ phương trình: \(\left\{ \begin{array}{l}\frac{1}{x} + \frac{1}{y} = \frac{1}{{90}}\\\frac{{15}}{x} + \frac{{20}}{y} = \frac{1}{5}\end{array} \right.\).

Giải hệ phương trình suy ra \(\left\{ \begin{array}{l}\frac{1}{x} = \frac{1}{{225}}\\\frac{1}{y} = \frac{1}{{150}}\end{array} \right.\) suy ra \(\left\{ \begin{array}{l}x = 225\\y = 150\end{array} \right.\) (thỏa mãn).

Vậy vòi thứ I chảy một mình trong 225 phút = 3,75 giờ thì đầy bể.

Vòi thứ II chảy một mình trong 150 phút = 2,5 giờ thì đầy bể.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay