Một nhà tài trợ dự kiến tổ chức một buổi đi dã ngoại tập thể nhằm giúp các bạn học sinh vùng cao trải nghiệm thực tế tại một trang trại trong 1 ngày (từ 14h ngày hôm trước đến 12h ngày hôm sau). Cho biết số tiền tài trợ dự kiến là 30 triệu đồng và giá thuê các dịch vụ và phòng nghỉ trưa là 17 triệu đồng 1 ngày, giá mỗi suất ăn trưa, ăn tối là 60 nghìn đồng và mỗi suất ăn sáng là 30 nghìn đồng. Hỏi có thể tổ chức nhiều nhất cho bao nhiêu bạn tham gia được?
Một nhà tài trợ dự kiến tổ chức một buổi đi dã ngoại tập thể nhằm giúp các bạn học sinh vùng cao trải nghiệm thực tế tại một trang trại trong 1 ngày (từ 14h ngày hôm trước đến 12h ngày hôm sau). Cho biết số tiền tài trợ dự kiến là 30 triệu đồng và giá thuê các dịch vụ và phòng nghỉ trưa là 17 triệu đồng 1 ngày, giá mỗi suất ăn trưa, ăn tối là 60 nghìn đồng và mỗi suất ăn sáng là 30 nghìn đồng. Hỏi có thể tổ chức nhiều nhất cho bao nhiêu bạn tham gia được?
Quảng cáo
Trả lời:
Gọi số bạn tham gia là x (x ∈ ℕ*).
Theo đề bài, ta có:
17 000 000 + (60 000 + 30 000)x ≤ 30 000 000 hay 90 000x ≤ 13 000 000.
Suy ra x ≤ \(\frac{{1300}}{9}\) = 144,4444….
Vậy có thể tổ chức nhiều nhất cho 144 bạn tham gia.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: A
Gọi x là giá mà cửa hàng phải bán để sau khi giảm giá thu được lợi nhuận cao nhất (x > 0, triệu đồng).
Theo đề, số tiền mà của hàng sẽ giảm là 22 – x (triệu đồng) mỗi chiếc.
Khi đó, số lượng máy tính tăng lên là: 50(22 – x) : 0,2 = 250(22 – x) chiếc.
Do đó, số lượng máy tính mà doanh nghiệp bán được là:
500 + 250(22 – x) = 6000 – 250x (chiếc)
Doanh thu mà cửa hàng sẽ đạt được là: (6000 – 250x)x (triệu đồng).
Tiền mà cửa hàng bỏ ra để nhập máy tính sẽ là:
18(6000 – 250x) = 108000 – 4500x (triệu đồng)
Lợi nhuận mà cửa hàng thu được sau khi bán giá mới là:
(6000 – 250x)x – 108000 + 4500x = −250x2 + 10500x – 108000 (triệu đồng).
Ta có: −250x2 + 10500x – 108000 = −250(x – 21)2 + 2250 ≤ 2250.
Dấu “=” xảy ra khi −250(x – 21)2 = 0 suy ra x – 21 = 0 khi x = 21.
Vậy cửa hàng bán với giá 21 triệu đồng thì doanh thu nhận được là lớn nhất.
Lời giải
Đáp án đúng là: B
Gọi độ dài của đoạn AE = x (0 < x < 4) (m) suy ra độ dài của đoạn
EB = 4 – x (m).
Theo đề, các phần đất hình tam giác bằng nhau, nên ta có:
AE = BH = GC = DF = x (m) và BE = CH = GD = AF = 4 – x (m).
Áp dụng định lí Pythagore vào tam giác AEF vuông tại A, ta có:
AE2 + AF2 = EF2
2x2 – 8x + 16 = EF2
Suy ra EF = \[\sqrt {2{x^2} - 8x + 16} {\rm{ }} = {\rm{ }}\sqrt {2\left( {{x^2} - 4x + 4} \right) + 8} = \sqrt {2{{\left( {x - 2} \right)}^2} + 8} \] (m).
Do các phần hình tam giác có diện tích bằng nhau nên ta có:
FG = GH = HE = EF = \[\sqrt {2{{\left( {x - 2} \right)}^2} + 8} \] (m).
Suy ra, chu vi tứ giác EFGH nhỏ nhất khi \[\sqrt {2{{\left( {x - 2} \right)}^2} + 8} \] nhỏ nhất.
Với mọi 0 < x < 4, ta có:
2(x – 2)2 ≥ 0
2(x – 2)2 + 8 ≥ 8
\[\sqrt {2{{\left( {x - 2} \right)}^2} + 8} \] ≥ \[\sqrt 8 \]
\[4\sqrt {2{{\left( {x - 2} \right)}^2} + 8} \] ≥ \[4\sqrt 8 \]
\[4\sqrt {2{{\left( {x - 2} \right)}^2} + 8} \] ≥ \[8\sqrt 2 \].
Do đó, chu vi tứ giác EFGH nhỏ nhất bằng \[8\sqrt 2 \] (m) khi x – 2 = 0 hay x = 2 (m).
Vậy khoảng cách từ A đến E bằng 2 m thì tứ giác EFGH có chu vi nhỏ nhất.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.