Câu hỏi:

19/08/2025 11,356 Lưu

Cho phương trình \({\log _3}\left( {x + 6} \right) = {\log _3}\left( {x - 1} \right) + 1\) (*).

a) Điều kiện xác định của phương trình: \(x > 1\).

b) Phương trình (*) có chung tập nghiệm với phương trình \(\frac{{{x^2} - 11x + 9}}{{x - 1}} = 0\).

c) Gọi \(x = a\) là nghiệm của phương trình (*), khi đó \(\mathop {\lim }\limits_{x \to a} \left( {x - 3} \right) = \frac{5}{2}\).

d) Nghiệm của phương trình (*) là hoành độ giao điểm của đường thẳng \({d_1}:2x - y - 8 = 0\) với đường thẳng \({d_2}:y = 0\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Điều kiện: \(\left\{ {\begin{array}{*{20}{l}}{x + 6 > 0}\\{x - 1 > 0}\end{array} \Leftrightarrow x > 1} \right.\).

Ta có \({\log _3}\left( {x + 6} \right) = {\log _3}\left( {x - 1} \right) + 1 \Leftrightarrow {\log _3}\left( {x + 6} \right) = {\log _3}\left( {x - 1} \right) + {\log _3}3\)

\[ \Leftrightarrow {\log _3}\left( {x + 6} \right) = {\log _3}3\left( {x - 1} \right) \Rightarrow x + 6 = 3\left( {x - 1} \right) \Leftrightarrow x = \frac{9}{2}\] (thoả mãn điều kiện).

Vậy phương trình (*) có nghiệm là \(x = \frac{9}{2}\).

Giải phương trình: \(\frac{{{x^2} - 11x + 9}}{{x - 1}} = 0\) ta được tập nghiệm là \(S = \left\{ {\frac{{11 \pm \sqrt {85} }}{2}} \right\}\).

Ta có \(\mathop {\lim }\limits_{x \to \frac{9}{2}} \left( {x - 3} \right) = \frac{9}{2} - 3 = \frac{3}{2} \ne \frac{5}{2}\).

Ta có \({d_1}:2x - y - 8 = 0 \Leftrightarrow y = 2x - 8\).

Phương trình hoành độ giao điểm của hai đường thẳng \({d_1}\)\({d_2}\) là: \(2x - 8 = 0\)\( \Leftrightarrow x = 4\).

Đáp án:       a) Đúng,      b) Sai,                   c) Sai,                    d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có h=x=1,5costπ41,5 .

Vật ở xa vị trí cân bằng nhất nghĩa là .

Khi đó, costπ4=±1tπ4=k2πtπ4=π+k2πt=8kt=4+8kk . Vậy trong 10 giây đầu tiên thì vật ở xa vị trí cân bằng nhất tại các thời điểm t=0,t=4,t=8  (giây).

Khi vật ở vị trí cân bằng thì x=01,5costπ4=0costπ4=0

tπ4=π2+kπt=2+4k  k

.

Vậy trong khoảng từ 0 đến 20 giây thì vật ở vị trí cân bằng tại các thời điểm t=2,t=6,t=10,t=14,t=18  (giây); tức là có 5 lần vật qua vị trí cân bằng.

Đáp án:       a) Đúng,      b) Sai,                   c) Đúng,      d) Sai.

Lời giải

Ta có cot3x=13cot3x=cotπ33x=π3+kπx=π9+kπ3  k.

π2<π9+kπ3<0  k76<k<13k=1;0x=π9x=4π9.

Đáp án:       a) Sai,                    b) Sai,                   c) Đúng,      d) Đúng.