Câu hỏi:
26/12/2024 775Cho phương trình \({\sin ^2}\left( {2x + \frac{\pi }{4}} \right) = {\cos ^2}\left( {x + \frac{\pi }{2}} \right)\).
a) Hạ bậc hai vế, ta được phương trình \(\frac{{1 + \cos \left( {4x + \frac{\pi }{2}} \right)}}{2} = \frac{{1 - \cos \left( {2x + \pi } \right)}}{2}\).
b) Ta có \(\cos \left( {2x + \pi } \right) = - \cos 2x\).
c) Phương trình đã cho đưa về dạng \(\cos \left( {4x + \frac{\pi }{2}} \right) = \cos 2x\).
d) Nghiệm của phương trình đã cho là \(x = - \frac{\pi }{4} + k\pi \) và \(x = & \frac{\pi }{{12}} + k\frac{\pi }{3}\,\,\left( {k \in \mathbb{Z}} \right)\).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).
Quảng cáo
Trả lời:
Hạ bậc hai vế của phương trình đã cho, ta được .
Ta có (Áp dụng giá trị lượng giác của hai cung hơn kém ).
Ta có
Đáp án: a) Sai, b) Đúng, c) Đúng, d) Sai.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cô Liên gửi \[100\] triệu đồng vào ngân hàng theo hình thức lãi kép có kì hạn là \[12\] tháng với lãi suất \(6\% \) một năm. Giả sử qua các năm thì lãi suất không thay đổi và cô Liên không gửi thêm tiền vào mỗi năm. Hỏi sau ít nhất bao nhiêu năm thì số tiền cô Liên có được cả gốc và lãi nhiều hơn \[150\] triệu đồng (làm tròn kết quả đến hàng đơn vị)?
Câu 2:
Cho hai đồ thị hàm số \(y = \sin \left( {x + \frac{\pi }{4}} \right)\) và \(y = \sin x\).
a) Phương trình hoành độ giao điểm của hai đồ thị hàm số: \(\sin \left( {x + \frac{\pi }{4}} \right) = \sin x\).
b) Hoành độ giao điểm của hai đồ thị là \(x = \frac{{3\pi }}{8} + k\pi \,\,\left( {k \in \mathbb{Z}} \right)\).
c) Khi \[x \in \left[ {0;2\pi } \right]\] thì hai đồ thị hàm số cắt nhau tại ba điểm.
d) Khi \(x \in \left[ {0;2\pi } \right]\) thì toạ độ giao điểm của hai đồ thị hàm số là: \(\left( {\frac{{5\pi }}{8};\sin \frac{{5\pi }}{8}} \right),\left( {\frac{{7\pi }}{8};\sin \frac{{7\pi }}{8}} \right)\).
Câu 3:
a) Vật ở xa vị trí cân bằng nhất nghĩa là \(h = 1,5\;\,{\rm{m}}\).
b) Trong 10 giây đầu tiên, có hai thời điểm vật ở xa vị trí cân bằng nhất.
c) Khi vật ở vị trí cân bằng thì \(\cos \left( {\frac{{t\pi }}{4}} \right) = 0\).
d) Trong khoảng từ 0 đến 20 giây thì vật đi qua vị trí cân bằng 4 lần.
Câu 4:
Cho phương trình \({\log _3}\left( {x + 6} \right) = {\log _3}\left( {x - 1} \right) + 1\) (*).
a) Điều kiện xác định của phương trình: \(x > 1\).
b) Phương trình (*) có chung tập nghiệm với phương trình \(\frac{{{x^2} - 11x + 9}}{{x - 1}} = 0\).
c) Gọi \(x = a\) là nghiệm của phương trình (*), khi đó \(\mathop {\lim }\limits_{x \to a} \left( {x - 3} \right) = \frac{5}{2}\).
d) Nghiệm của phương trình (*) là hoành độ giao điểm của đường thẳng \({d_1}:2x - y - 8 = 0\) với đường thẳng \({d_2}:y = 0\).
Câu 5:
Một cây cầu có dạng cung \(AB\) của đồ thị hàm số \(y = 4,8\cos \frac{x}{9}\) và được mô tả trong hệ trục toạ độ với đơn vị trục là mét như ở hình vẽ dưới đây.
Một sà lan chở khối hàng hoá được xếp thành hình hộp chữ nhật với độ cao \(3,6\,{\rm{m}}\) so với mực nước sông. Hỏi chiều rộng của khối hàng hoá đó lớn nhất là bao nhiêu mét để sà lan có thể đi qua được gầm cầu (làm tròn kết quả đến hàng đơn vị)?
Câu 6:
Cho phương trình lượng giác \(\cot 3x = - \frac{1}{{\sqrt 3 }}\) (*).
a) Phương trình (*) tương đương \(\cot 3x = \cot \left( {\frac{{ - \pi }}{6}} \right)\).
b) Phương trình (*) có nghiệm \(x = \frac{\pi }{9} + k\frac{\pi }{3}\,\,\left( {k \in \mathbb{Z}} \right)\).
c) Tổng các nghiệm của phương trình trong khoảng \(\left( { - \frac{\pi }{2};0} \right)\) bằng \(\frac{{ - 5\pi }}{9}\).
d) Phương trình có nghiệm dương nhỏ nhất bằng \(\frac{{2\pi }}{9}\).
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
50 bài tập Nguyên hàm, tích phân và ứng dụng có lời giải
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
CÂU TRẮC NGHIỆM ĐÚNG SAI
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 3)
Đề minh họa THPT Quốc gia môn Toán năm 2023 có đáp án
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 5)
về câu hỏi!