Câu hỏi:
26/12/2024 9,216
Cô Liên gửi \[100\] triệu đồng vào ngân hàng theo hình thức lãi kép có kì hạn là \[12\] tháng với lãi suất \(6\% \) một năm. Giả sử qua các năm thì lãi suất không thay đổi và cô Liên không gửi thêm tiền vào mỗi năm. Hỏi sau ít nhất bao nhiêu năm thì số tiền cô Liên có được cả gốc và lãi nhiều hơn \[150\] triệu đồng (làm tròn kết quả đến hàng đơn vị)?
Cô Liên gửi \[100\] triệu đồng vào ngân hàng theo hình thức lãi kép có kì hạn là \[12\] tháng với lãi suất \(6\% \) một năm. Giả sử qua các năm thì lãi suất không thay đổi và cô Liên không gửi thêm tiền vào mỗi năm. Hỏi sau ít nhất bao nhiêu năm thì số tiền cô Liên có được cả gốc và lãi nhiều hơn \[150\] triệu đồng (làm tròn kết quả đến hàng đơn vị)?
Câu hỏi trong đề: 43 bài tập Phương trình và bất phương trình có lời giải !!
Quảng cáo
Trả lời:
Số tiền sau \(t\) năm mà cô Liên có là: \(S = 100 \cdot {\left( {1,06} \right)^t}\).
Xét bất phương trình: \(100 \cdot {\left( {1,06} \right)^t} > 150 \Leftrightarrow {\left( {1,06} \right)^t} > \frac{{150}}{{100}} \Leftrightarrow t > {\log _{1,06}}\left( {1,5} \right)\).
Vì \({\log _{1,06}}\left( {1,5} \right) \approx 6,96\) nên \(t > 6,96\).
Vậy sau ít nhất \(7\) năm thì số tiền cô Liên có được cả gốc và lãi nhiều hơn \[150\] triệu đồng.
Đáp án: \(7\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Điều kiện: \(\left\{ {\begin{array}{*{20}{l}}{x + 6 > 0}\\{x - 1 > 0}\end{array} \Leftrightarrow x > 1} \right.\).
Ta có \({\log _3}\left( {x + 6} \right) = {\log _3}\left( {x - 1} \right) + 1 \Leftrightarrow {\log _3}\left( {x + 6} \right) = {\log _3}\left( {x - 1} \right) + {\log _3}3\)
\[ \Leftrightarrow {\log _3}\left( {x + 6} \right) = {\log _3}3\left( {x - 1} \right) \Rightarrow x + 6 = 3\left( {x - 1} \right) \Leftrightarrow x = \frac{9}{2}\] (thoả mãn điều kiện).
Vậy phương trình (*) có nghiệm là \(x = \frac{9}{2}\).
Giải phương trình: \(\frac{{{x^2} - 11x + 9}}{{x - 1}} = 0\) ta được tập nghiệm là \(S = \left\{ {\frac{{11 \pm \sqrt {85} }}{2}} \right\}\).
Ta có \(\mathop {\lim }\limits_{x \to \frac{9}{2}} \left( {x - 3} \right) = \frac{9}{2} - 3 = \frac{3}{2} \ne \frac{5}{2}\).
Ta có \({d_1}:2x - y - 8 = 0 \Leftrightarrow y = 2x - 8\).
Phương trình hoành độ giao điểm của hai đường thẳng \({d_1}\) và \({d_2}\) là: \(2x - 8 = 0\)\( \Leftrightarrow x = 4\).
Đáp án: a) Đúng, b) Sai, c) Sai, d) Sai.
Lời giải
Với mỗi điểm \(M\left( {x;y} \right)\) nằm trên mặt cầu, khoảng cách từ điểm \(M\) đến mặt nước tương ứng với giá trị tung độ \(y\) của điểm \(M\).
Xét phương trình: \(4,8\cos \frac{x}{9} = 3,6 \Leftrightarrow \cos \frac{x}{9} = \frac{3}{4}\)
Do \(x \in \left[ { - \frac{{9\pi }}{2};\frac{{9\pi }}{2}} \right]\) nên \(\frac{x}{9} \in \left[ { - \frac{\pi }{2};\frac{\pi }{2}} \right]\)
Từ phương trình \(\cos \frac{x}{9} = \frac{3}{4}\) với \(\frac{x}{9} \in \left[ { - \frac{\pi }{2};\frac{\pi }{2}} \right]\), ta có \(\frac{x}{9} \approx \pm 0,7227\). Khi đó, \(2\left| x \right| \approx 13,0086\).
Vậy chiều rộng của khối hàng hoá đó lớn nhất là \(13\,{\rm{m}}\) để sà lan có thể đi qua được gầm cầu.
Đáp án: \(13\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.