Câu hỏi:

26/12/2024 2,623

Cho phương trình lượng giác \(\cot 3x = - \frac{1}{{\sqrt 3 }}\) (*).

a) Phương trình (*) tương đương \(\cot 3x = \cot \left( {\frac{{ - \pi }}{6}} \right)\).

b) Phương trình (*) có nghiệm \(x = \frac{\pi }{9} + k\frac{\pi }{3}\,\,\left( {k \in \mathbb{Z}} \right)\).

c) Tổng các nghiệm của phương trình trong khoảng \(\left( { - \frac{\pi }{2};0} \right)\) bằng \(\frac{{ - 5\pi }}{9}\).

d) Phương trình có nghiệm dương nhỏ nhất bằng \(\frac{{2\pi }}{9}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có cot3x=13cot3x=cotπ33x=π3+kπx=π9+kπ3  k.

π2<π9+kπ3<0  k76<k<13k=1;0x=π9x=4π9.

Đáp án:       a) Sai,                    b) Sai,                   c) Đúng,      d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Điều kiện: \(\left\{ {\begin{array}{*{20}{l}}{x + 6 > 0}\\{x - 1 > 0}\end{array} \Leftrightarrow x > 1} \right.\).

Ta có \({\log _3}\left( {x + 6} \right) = {\log _3}\left( {x - 1} \right) + 1 \Leftrightarrow {\log _3}\left( {x + 6} \right) = {\log _3}\left( {x - 1} \right) + {\log _3}3\)

\[ \Leftrightarrow {\log _3}\left( {x + 6} \right) = {\log _3}3\left( {x - 1} \right) \Rightarrow x + 6 = 3\left( {x - 1} \right) \Leftrightarrow x = \frac{9}{2}\] (thoả mãn điều kiện).

Vậy phương trình (*) có nghiệm là \(x = \frac{9}{2}\).

Giải phương trình: \(\frac{{{x^2} - 11x + 9}}{{x - 1}} = 0\) ta được tập nghiệm là \(S = \left\{ {\frac{{11 \pm \sqrt {85} }}{2}} \right\}\).

Ta có \(\mathop {\lim }\limits_{x \to \frac{9}{2}} \left( {x - 3} \right) = \frac{9}{2} - 3 = \frac{3}{2} \ne \frac{5}{2}\).

Ta có \({d_1}:2x - y - 8 = 0 \Leftrightarrow y = 2x - 8\).

Phương trình hoành độ giao điểm của hai đường thẳng \({d_1}\)\({d_2}\) là: \(2x - 8 = 0\)\( \Leftrightarrow x = 4\).

Đáp án:       a) Đúng,      b) Sai,                   c) Sai,                    d) Sai.

Lời giải

Số tiền sau \(t\) năm mà cô Liên có là: \(S = 100 \cdot {\left( {1,06} \right)^t}\).

Xét bất phương trình: \(100 \cdot {\left( {1,06} \right)^t} > 150 \Leftrightarrow {\left( {1,06} \right)^t} > \frac{{150}}{{100}} \Leftrightarrow t > {\log _{1,06}}\left( {1,5} \right)\).

\({\log _{1,06}}\left( {1,5} \right) \approx 6,96\) nên \(t > 6,96\).

Vậy sau ít nhất \(7\) năm thì số tiền cô Liên có được cả gốc và lãi nhiều hơn \[150\] triệu đồng.

Đáp án: \(7\).

Câu 6

Nghiệm của phương trình \({2^{2x - 4}} = {2^x}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay