Câu hỏi:

26/12/2024 2,913

Một vật dao động xung quanh vị trí cân bằng theo phương trình \(x = 1,5\cos \left( {\frac{{t\pi }}{4}} \right)\); trong đó \(t\) là thời gian được tính bằng giây và quãng đường \(h = \left| x \right|\) được tính bằng mét là khoảng cách theo phương ngang của chất điểm đối với vị trí cân bằng (xem hình bên).
Một vật dao động xung quanh vị trí cân bằng theo phương trình (ảnh 1)

a) Vật ở xa vị trí cân bằng nhất nghĩa là \(h = 1,5\;\,{\rm{m}}\).

b) Trong 10 giây đầu tiên, có hai thời điểm vật ở xa vị trí cân bằng nhất.

c) Khi vật ở vị trí cân bằng thì \(\cos \left( {\frac{{t\pi }}{4}} \right) = 0\).

d) Trong khoảng từ 0 đến 20 giây thì vật đi qua vị trí cân bằng 4 lần.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có h=x=1,5costπ41,5 .

Vật ở xa vị trí cân bằng nhất nghĩa là .

Khi đó, costπ4=±1tπ4=k2πtπ4=π+k2πt=8kt=4+8kk . Vậy trong 10 giây đầu tiên thì vật ở xa vị trí cân bằng nhất tại các thời điểm t=0,t=4,t=8  (giây).

Khi vật ở vị trí cân bằng thì x=01,5costπ4=0costπ4=0

tπ4=π2+kπt=2+4k  k

.

Vậy trong khoảng từ 0 đến 20 giây thì vật ở vị trí cân bằng tại các thời điểm t=2,t=6,t=10,t=14,t=18  (giây); tức là có 5 lần vật qua vị trí cân bằng.

Đáp án:       a) Đúng,      b) Sai,                   c) Đúng,      d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Điều kiện: \(\left\{ {\begin{array}{*{20}{l}}{x + 6 > 0}\\{x - 1 > 0}\end{array} \Leftrightarrow x > 1} \right.\).

Ta có \({\log _3}\left( {x + 6} \right) = {\log _3}\left( {x - 1} \right) + 1 \Leftrightarrow {\log _3}\left( {x + 6} \right) = {\log _3}\left( {x - 1} \right) + {\log _3}3\)

\[ \Leftrightarrow {\log _3}\left( {x + 6} \right) = {\log _3}3\left( {x - 1} \right) \Rightarrow x + 6 = 3\left( {x - 1} \right) \Leftrightarrow x = \frac{9}{2}\] (thoả mãn điều kiện).

Vậy phương trình (*) có nghiệm là \(x = \frac{9}{2}\).

Giải phương trình: \(\frac{{{x^2} - 11x + 9}}{{x - 1}} = 0\) ta được tập nghiệm là \(S = \left\{ {\frac{{11 \pm \sqrt {85} }}{2}} \right\}\).

Ta có \(\mathop {\lim }\limits_{x \to \frac{9}{2}} \left( {x - 3} \right) = \frac{9}{2} - 3 = \frac{3}{2} \ne \frac{5}{2}\).

Ta có \({d_1}:2x - y - 8 = 0 \Leftrightarrow y = 2x - 8\).

Phương trình hoành độ giao điểm của hai đường thẳng \({d_1}\)\({d_2}\) là: \(2x - 8 = 0\)\( \Leftrightarrow x = 4\).

Đáp án:       a) Đúng,      b) Sai,                   c) Sai,                    d) Sai.

Lời giải

Số tiền sau \(t\) năm mà cô Liên có là: \(S = 100 \cdot {\left( {1,06} \right)^t}\).

Xét bất phương trình: \(100 \cdot {\left( {1,06} \right)^t} > 150 \Leftrightarrow {\left( {1,06} \right)^t} > \frac{{150}}{{100}} \Leftrightarrow t > {\log _{1,06}}\left( {1,5} \right)\).

\({\log _{1,06}}\left( {1,5} \right) \approx 6,96\) nên \(t > 6,96\).

Vậy sau ít nhất \(7\) năm thì số tiền cô Liên có được cả gốc và lãi nhiều hơn \[150\] triệu đồng.

Đáp án: \(7\).