Một vật dao động xung quanh vị trí cân bằng theo phương trình \(x = 1,5\cos \left( {\frac{{t\pi }}{4}} \right)\); trong đó \(t\) là thời gian được tính bằng giây và quãng đường \(h = \left| x \right|\) được tính bằng mét là khoảng cách theo phương ngang của chất điểm đối với vị trí cân bằng (xem hình bên).

a) Vật ở xa vị trí cân bằng nhất nghĩa là \(h = 1,5\;\,{\rm{m}}\).
b) Trong 10 giây đầu tiên, có hai thời điểm vật ở xa vị trí cân bằng nhất.
c) Khi vật ở vị trí cân bằng thì \(\cos \left( {\frac{{t\pi }}{4}} \right) = 0\).
d) Trong khoảng từ 0 đến 20 giây thì vật đi qua vị trí cân bằng 4 lần.
Quảng cáo
Trả lời:
Ta có .
Vật ở xa vị trí cân bằng nhất nghĩa là .
Khi đó, . Vậy trong 10 giây đầu tiên thì vật ở xa vị trí cân bằng nhất tại các thời điểm (giây).
Khi vật ở vị trí cân bằng thì
.
Vậy trong khoảng từ 0 đến 20 giây thì vật ở vị trí cân bằng tại các thời điểm (giây); tức là có 5 lần vật qua vị trí cân bằng.
Đáp án: a) Đúng, b) Sai, c) Đúng, d) Sai.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có .
Đáp án: a) Sai, b) Sai, c) Đúng, d) Đúng.
Lời giải
Với mỗi điểm \(M\left( {x;y} \right)\) nằm trên mặt cầu, khoảng cách từ điểm \(M\) đến mặt nước tương ứng với giá trị tung độ \(y\) của điểm \(M\).
Xét phương trình: \(4,8\cos \frac{x}{9} = 3,6 \Leftrightarrow \cos \frac{x}{9} = \frac{3}{4}\)
Do \(x \in \left[ { - \frac{{9\pi }}{2};\frac{{9\pi }}{2}} \right]\) nên \(\frac{x}{9} \in \left[ { - \frac{\pi }{2};\frac{\pi }{2}} \right]\)
Từ phương trình \(\cos \frac{x}{9} = \frac{3}{4}\) với \(\frac{x}{9} \in \left[ { - \frac{\pi }{2};\frac{\pi }{2}} \right]\), ta có \(\frac{x}{9} \approx \pm 0,7227\). Khi đó, \(2\left| x \right| \approx 13,0086\).
Vậy chiều rộng của khối hàng hoá đó lớn nhất là \(13\,{\rm{m}}\) để sà lan có thể đi qua được gầm cầu.
Đáp án: \(13\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
