Câu hỏi:
03/01/2025 22,607
Cho hàm số \(f\left( x \right) = x - \sin 2x\).
a) \(f'\left( x \right) = 1 + 2\cos 2x\).
b) \(f'\left( x \right) = 0 \Leftrightarrow \cos 2x = - \frac{1}{2}\).
c) Trên đoạn \(\left[ {0;\pi } \right]\), phương trình \(f'\left( x \right) = 0\) có đúng một nghiệm \(\frac{{5\pi }}{6}\).
d) Giá trị lớn nhất của hàm số đã cho trên đoạn \(\left[ {0;\pi } \right]\) là \(\frac{{5\pi }}{6} + \frac{{\sqrt 3 }}{2}\).
Cho hàm số \(f\left( x \right) = x - \sin 2x\).
a) \(f'\left( x \right) = 1 + 2\cos 2x\).
b) \(f'\left( x \right) = 0 \Leftrightarrow \cos 2x = - \frac{1}{2}\).
c) Trên đoạn \(\left[ {0;\pi } \right]\), phương trình \(f'\left( x \right) = 0\) có đúng một nghiệm \(\frac{{5\pi }}{6}\).
d) Giá trị lớn nhất của hàm số đã cho trên đoạn \(\left[ {0;\pi } \right]\) là \(\frac{{5\pi }}{6} + \frac{{\sqrt 3 }}{2}\).
Câu hỏi trong đề: 44 bài tập Đạo hàm và khảo sát hàm số có lời giải !!
Quảng cáo
Trả lời:
Ta có \(f'\left( x \right) = {\left( {x - \sin 2x} \right)^\prime } = 1 - 2\cos 2x\).
\(f'\left( x \right) = 0 \Leftrightarrow 1 - 2\cos 2x = 0 \Leftrightarrow \cos 2x = \frac{1}{2}\)\[ \Leftrightarrow 2x = \pm \frac{\pi }{3} + 2k\pi \Leftrightarrow x = \pm \frac{\pi }{6} + k\pi \left( {k \in \mathbb{Z}} \right)\].
Với \(x \in \left[ {0;\pi } \right]\) thì phương trình\(f'\left( x \right) = 0\) có nghiệm\[x = \frac{\pi }{6}\] hoặc \[x = \frac{{5\pi }}{6}\].
Có \(f\left( 0 \right) = 0\); \(f\left( {\frac{\pi }{6}} \right) = \frac{\pi }{6} - \frac{{\sqrt 3 }}{2};\,\,f\left( {\frac{{5\pi }}{6}} \right) = \frac{{5\pi }}{6} + \frac{{\sqrt 3 }}{2};\,\,f\left( \pi \right) = \pi \).
Vậy giá trị lớn nhất của hàm số đã cho trên đoạn \(\left[ {0;\pi } \right]\) là \(\frac{{5\pi }}{6} + \frac{{\sqrt 3 }}{2}\).
Đáp án: a) Sai, b) Sai, c) Sai, d) Đúng.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi số máy móc công ty sử dụng để sản xuất là \(x\,\,\left( {x \in \mathbb{N},\,\,x > 0} \right)\).
Thời gian cần để sản xuất hết \(8000\) quả bóng là: \(\frac{{8000}}{{30x}}\) (giờ).
Tổng chi phí để sản xuất là: \(P\left( x \right) = 200x + \frac{{8000}}{{30x}} \cdot 192 = 200x + \frac{{51200}}{x}\).
Ta có: \(P'\left( x \right) = 200 - \frac{{51200}}{{{x^2}}} = 0 \Leftrightarrow {x^2} = 256 \Leftrightarrow \left[ \begin{array}{l}x = 16\\x = - 16\left( L \right)\end{array} \right.\).
Bảng biến thiên:

Vậy công ty nên sử dụng \(16\) máy để chi phí hoạt động là thấp nhất.
Đáp án: \(16.\)
Lời giải
Ta có \(2x + 2y + \pi x = 4\), suy ra \(y = 2 - \frac{{\left( {\pi + 2} \right)x}}{2}\).
\(S\left( x \right) = 2xy + \frac{{\pi {x^2}}}{2} = 2x\left( {2 - x - \frac{{\pi x}}{2}} \right) + \frac{{\pi {x^2}}}{2} = 4x - 2{x^2} - \frac{{\pi {x^2}}}{2}\) (m2).
Ta có \(x > 0\) và \(y > 0\), suy ra \(0 < x < \frac{4}{{\pi + 2}}\).
\(S'\left( x \right) = 4 - 4x - \pi x;\,\,S'\left( x \right) = 0 \Leftrightarrow x = \frac{4}{{\pi + 4}}\).
Bảng biến thiên

Vậy diện tích của cửa sổ lớn nhất khi \(x = \frac{4}{{\pi + 4}}\) (m). Giá trị lớn nhất là \(\frac{8}{{\pi + 4}}\) (m2).
Đáp án: a) Sai, b) Đúng, c) Sai, d) Đúng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.