Câu hỏi:

03/01/2025 22,607

Cho hàm số \(f\left( x \right) = x - \sin 2x\).

a) \(f'\left( x \right) = 1 + 2\cos 2x\).

b) \(f'\left( x \right) = 0 \Leftrightarrow \cos 2x = - \frac{1}{2}\).

c) Trên đoạn \(\left[ {0;\pi } \right]\), phương trình \(f'\left( x \right) = 0\) có đúng một nghiệm \(\frac{{5\pi }}{6}\).

d) Giá trị lớn nhất của hàm số đã cho trên đoạn \(\left[ {0;\pi } \right]\)\(\frac{{5\pi }}{6} + \frac{{\sqrt 3 }}{2}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có \(f'\left( x \right) = {\left( {x - \sin 2x} \right)^\prime } = 1 - 2\cos 2x\).

\(f'\left( x \right) = 0 \Leftrightarrow 1 - 2\cos 2x = 0 \Leftrightarrow \cos 2x = \frac{1}{2}\)\[ \Leftrightarrow 2x = \pm \frac{\pi }{3} + 2k\pi \Leftrightarrow x = \pm \frac{\pi }{6} + k\pi \left( {k \in \mathbb{Z}} \right)\].

Với \(x \in \left[ {0;\pi } \right]\) thì phương trình\(f'\left( x \right) = 0\) có nghiệm\[x = \frac{\pi }{6}\] hoặc \[x = \frac{{5\pi }}{6}\].

\(f\left( 0 \right) = 0\); \(f\left( {\frac{\pi }{6}} \right) = \frac{\pi }{6} - \frac{{\sqrt 3 }}{2};\,\,f\left( {\frac{{5\pi }}{6}} \right) = \frac{{5\pi }}{6} + \frac{{\sqrt 3 }}{2};\,\,f\left( \pi \right) = \pi \).

Vậy giá trị lớn nhất của hàm số đã cho trên đoạn \(\left[ {0;\pi } \right]\)\(\frac{{5\pi }}{6} + \frac{{\sqrt 3 }}{2}\).

Đáp án:       a) Sai,                    b) Sai,                   c) Sai,                    d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi số máy móc công ty sử dụng để sản xuất là \(x\,\,\left( {x \in \mathbb{N},\,\,x > 0} \right)\).

Thời gian cần để sản xuất hết \(8000\) quả bóng là: \(\frac{{8000}}{{30x}}\) (giờ).

Tổng chi phí để sản xuất là: \(P\left( x \right) = 200x + \frac{{8000}}{{30x}} \cdot 192 = 200x + \frac{{51200}}{x}\).

Ta có: \(P'\left( x \right) = 200 - \frac{{51200}}{{{x^2}}} = 0 \Leftrightarrow {x^2} = 256 \Leftrightarrow \left[ \begin{array}{l}x = 16\\x = - 16\left( L \right)\end{array} \right.\).

Bảng biến thiên:

Một công ty chuyên sản xuất dụng cụ thể thao nhận được đơn đặt hàng sản xuất \(8000\) (ảnh 1)

Vậy công ty nên sử dụng \(16\) máy để chi phí hoạt động là thấp nhất.

Đáp án: \(16.\)

Lời giải

Ta có \(2x + 2y + \pi x = 4\), suy ra \(y = 2 - \frac{{\left( {\pi + 2} \right)x}}{2}\).

\(S\left( x \right) = 2xy + \frac{{\pi {x^2}}}{2} = 2x\left( {2 - x - \frac{{\pi x}}{2}} \right) + \frac{{\pi {x^2}}}{2} = 4x - 2{x^2} - \frac{{\pi {x^2}}}{2}\) (m2).

Ta có \(x > 0\)\(y > 0\), suy ra \(0 < x < \frac{4}{{\pi + 2}}\).

\(S'\left( x \right) = 4 - 4x - \pi x;\,\,S'\left( x \right) = 0 \Leftrightarrow x = \frac{4}{{\pi + 4}}\).

Bảng biến thiên

Người ta dùng một thanh thép có chiều dài 4 m để uốn thành khung viền của một cửa sổ có dạng một (ảnh 2)

Vậy diện tích của cửa sổ lớn nhất khi \(x = \frac{4}{{\pi + 4}}\) (m). Giá trị lớn nhất là \(\frac{8}{{\pi + 4}}\) (m2).

Đáp án:       a) Sai,                    b) Đúng,     c) Sai,                    d) Đúng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Cho hàm số bậc ba \(y = f\left( x \right)\) có đồ thị là đường cong như trong hình bên. Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Tiệm cận xiên của đồ thị hàm số \(y = \frac{{{x^2} - x + 2}}{{x + 1}}\) có phương trình là

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Giá trị lớn nhất của hàm số \(f\left( x \right) = 2 + 2x - {e^x}\) trên đoạn \(\left[ {0;2} \right]\) bằng

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP