Câu hỏi:

09/01/2025 2,136

Cho hình lăng trụ tam giác ABC.A'B'C' có \(AA' \bot AB,AA' \bot AC\) và tất cả các cạnh đều bằng \(a\). Gọi \(M\) và \(N\) lần lượt là trung điểm của \(AA'\) và \(AC\).

a) \(\left( {A'B,C'C} \right) = \widehat {AA'B}\).

b) \(\left( {A'B,C'C} \right) = 45^\circ \).

c) \(\left( {A'C,MB} \right) = \widehat {BAN}\).

d) \(\widehat {BMN} \approx 42,6^\circ \).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có: \(A'A{\rm{//}}C'C \Rightarrow \left( {A'B,C'C} \right) = \left( {A'B,A'A} \right) = \widehat {AA'B}\).

\(\Delta A'AB\) vuông cân tại \[A\] nên \(\widehat {AA'B} = 45^\circ \).

\(M\)\(N\) lần lượt là trung điểm của \(AA'\)\(AC\) nên \(MN\) là đường trung bình của \[\Delta AA'C\].

Do đó, \(A'C\,{\rm{//}}\,MN \Rightarrow \left( {A'C,MB} \right) = \left( {MN,MB} \right) = \widehat {BMN}\).

Xét \(\Delta MNB\) có: \(MB = \sqrt {{a^2} + {{\left( {\frac{a}{2}} \right)}^2}} = \frac{{a\sqrt 5 }}{2},\,MN = \sqrt {{{\left( {\frac{a}{2}} \right)}^2} + {{\left( {\frac{a}{2}} \right)}^2}} = \frac{{a\sqrt 2 }}{2}\,,\,BN = \frac{{a\sqrt 3 }}{2}\).

\(\cos \widehat {BMN} = \frac{{{{\left( {\frac{{a\sqrt 5 }}{2}} \right)}^2} + {{\left( {\frac{{a\sqrt 2 }}{2}} \right)}^2} - {{\left( {\frac{{a\sqrt 3 }}{2}} \right)}^2}}}{{2 \cdot \frac{{a\sqrt 5 }}{2} \cdot \frac{{a\sqrt 2 }}{2}}} = \frac{{\sqrt {10} }}{5} \Rightarrow \widehat {BMN} \approx 50,8^\circ \).

Đáp án:       a) Đúng,      b) Đúng,     c) Sai,                    d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho lăng trụ đều \(ABC.A'B'C'\). Biết rằng góc nhị diện \(\left[ {A,BC,A'} \right]\) có số đo bằng \(30^\circ \), tam giác  (ảnh 1)

Đặt \(AB = x,\left( {x > 0} \right)\), gọi \(M\) là trung điểm \(BC\).

Ta có \[\left\{ \begin{array}{l}AM \bot BC\\A'M \bot BC\end{array} \right.\], suy ra \(\widehat {A'MA}\) là góc phẳng nhị diện của góc nhị diện \(\left[ {A,BC,A'} \right]\)\[ \Rightarrow \widehat {A'MA} = 30^\circ \].

Xét \(\Delta A'AM\), có \[A'M = \frac{{AM}}{{cos30^\circ }} = \frac{{x\sqrt 3 }}{2} \cdot \frac{2}{{\sqrt 3 }} = x\].

\({S_{A'BC}} = 8 \Leftrightarrow \frac{1}{2}A'M \cdot BC = 8 \Leftrightarrow {x^2} = 16 \Rightarrow x = 4\).

Suy ra \(A'A = AM \cdot \tan 30^\circ  = \frac{{4 \cdot \sqrt 3 }}{2} \cdot \frac{1}{{\sqrt 3 }} = 2\); \({S_{ABC}} = \frac{{16 \cdot \sqrt 3 }}{4} = 4\sqrt 3 \).

Vậy \({V_{ABC.A'B'C'}} = A'A \cdot {S_{ABC}} = 2 \cdot 4\sqrt 3  = 8\sqrt 3 \). Chọn A.

Lời giải

Ta có: \(AD\,{\rm{//}}\,BC \Rightarrow AD\,{\rm{//}}\,\,\left( {SBC} \right) \Rightarrow d\left( {D,\left( {SBC} \right)} \right) = d\left( {A,\left( {SBC} \right)} \right)\).

Trong mặt phẳng \(\left( {SAB} \right)\), kẻ \(AH \bot SB\) tại \(H\). (1)

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{BC \bot AB}\\{BC \bot SA}\end{array} \Rightarrow BC \bot \left( {SAB} \right) \Rightarrow AH \bot BC} \right.\). (2)

Từ (1) và (2) suy ra \(AH \bot \left( {SBC} \right)\) hay \(d\left( {A,\left( {SBC} \right)} \right) = AH\).

Tam giác \(SAB\) vuông tại \(A\) có đường cao \(AH\) nên:

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật với \(AB = a\sqrt 2 \), \(AC = a\sqrt 3 \). (ảnh 1)

\(\frac{1}{{A{H^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{B^2}}} \Rightarrow AH = \frac{{SA \cdot AB}}{{\sqrt {S{A^2} + A{B^2}} }} = \frac{{2a \cdot a\sqrt 2 }}{{\sqrt {4{a^2} + 2{a^2}} }} = \frac{{2a\sqrt 3 }}{3}{\rm{. }}\)

Vậy \(d\left( {D,\left( {SBC} \right)} \right) = d\left( {A,\left( {SBC} \right)} \right) = AH = \frac{{2a\sqrt 3 }}{3}\).

Trong mặt phẳng \(\left( {SAD} \right)\), kẻ \(AK \bot SD\) tại \(K\). (3)

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{AB \bot SA}\\{AB \bot AD}\end{array} \Rightarrow AB \bot \left( {SAD} \right) \Rightarrow AB \bot AK} \right.\).(4)

Từ (3) và (4) suy ra \(AK\) là đường vuông góc chung của hai đường thẳng chéo nhau \(AB,SD\).

Tam giác \(ACD\) vuông tại \(D\) nên \(AD = \sqrt {A{C^2} - C{D^2}} = \sqrt {3{a^2} - 2{a^2}} = a\).

Tam giác \(SAD\) vuông tại \(A\) có đường cao \(AK\) nên

\(\frac{1}{{A{K^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{D^2}}} \Rightarrow AK = \frac{{SA \cdot AD}}{{\sqrt {S{A^2} + A{D^2}} }} = \frac{{2a \cdot a}}{{\sqrt {4{a^2} + {a^2}} }} = \frac{{2a\sqrt 5 }}{5}{\rm{. }}\)

Vậy \(d\left( {AB,SD} \right) = AK = \frac{{2a\sqrt 5 }}{5}\).

Diện tích đáy hình chóp là: \({S_{ABCD}} = a \cdot a\sqrt 2 = {a^2}\sqrt 2 \).

Thể tích khối chóp cần tìm là: \({V_{S.ABCD}} = \frac{1}{3}SA \cdot {S_{ABCD}} = \frac{1}{3} \cdot 2a \cdot {a^2}\sqrt 2 = \frac{{2\sqrt 2 {a^3}}}{3}{\rm{ }}\)(đơn vị thể tích).

Đáp án:       a) Đúng,      b) Sai,                    c) Đúng,      d) Sai.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay