Câu hỏi:

14/01/2025 107 Lưu

Cho hình chóp \(S.ABCD\), đáy \(ABCD\) là hình thoi cạnh \(a\), \(\widehat {BAD} = 60^\circ \). Hình chiếu vuông góc của \(S\) trên mặt phẳng đáy là giao điểm \(O\) của \(AC\)\(BD\). Góc nhị diện \(\left[ {S,CD,A} \right]\) có số đo bằng \(60^\circ \). Khoảng cách giữa \(AB\)\(SC\) bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Do \(ABCD\) là hình thoi cạnh \(a\), \(\widehat {BAD} = 60^\circ \) nên tam giác \(ABD\) và \(BCD\) là các tam giác đều cạnh \(a\). Kẻ \(OE \bot CD\) tại \(E\) và \(M\) là trung điểm của \(CD\). Khi đó, góc phẳng nhị diện \(\left[ {S,CD,A} \right]\) là \(\widehat {SEO}\) và bằng \(60^\circ \).

Ta có \(OE = \frac{1}{2}BM = \frac{{a\sqrt 3 }}{4}\).

Cho hình chóp \(S.ABCD\), đáy \(ABCD\) là hình thoi cạnh \(a\), \(\widehat {BAD} = 60^\circ \). Hình chiếu vuông (ảnh 1)

Kẻ \(OH \bot SE\) tại \(H\), ta có \(OH \bot \left( {SCD} \right)\)\( \Rightarrow d\left( {O,\left( {SCD} \right)} \right) = OH = OE \cdot \sin 60^\circ  = \frac{{3a}}{8}\).

Vậy \(d\left( {AB,SC} \right) = d\left( {AB,\left( {SCD} \right)} \right) = d\left( {A,\left( {SCD} \right)} \right) = 2d\left( {O,\left( {SCD} \right)} \right) = 2OH = \frac{{3a}}{4}\). Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho lăng trụ đều \(ABC.A'B'C'\). Biết rằng góc nhị diện \(\left[ {A,BC,A'} \right]\) có số đo bằng \(30^\circ \), tam giác  (ảnh 1)

Đặt \(AB = x,\left( {x > 0} \right)\), gọi \(M\) là trung điểm \(BC\).

Ta có \[\left\{ \begin{array}{l}AM \bot BC\\A'M \bot BC\end{array} \right.\], suy ra \(\widehat {A'MA}\) là góc phẳng nhị diện của góc nhị diện \(\left[ {A,BC,A'} \right]\)\[ \Rightarrow \widehat {A'MA} = 30^\circ \].

Xét \(\Delta A'AM\), có \[A'M = \frac{{AM}}{{cos30^\circ }} = \frac{{x\sqrt 3 }}{2} \cdot \frac{2}{{\sqrt 3 }} = x\].

\({S_{A'BC}} = 8 \Leftrightarrow \frac{1}{2}A'M \cdot BC = 8 \Leftrightarrow {x^2} = 16 \Rightarrow x = 4\).

Suy ra \(A'A = AM \cdot \tan 30^\circ  = \frac{{4 \cdot \sqrt 3 }}{2} \cdot \frac{1}{{\sqrt 3 }} = 2\); \({S_{ABC}} = \frac{{16 \cdot \sqrt 3 }}{4} = 4\sqrt 3 \).

Vậy \({V_{ABC.A'B'C'}} = A'A \cdot {S_{ABC}} = 2 \cdot 4\sqrt 3  = 8\sqrt 3 \). Chọn A.

Lời giải

Ta có: \(AD\,{\rm{//}}\,BC \Rightarrow AD\,{\rm{//}}\,\,\left( {SBC} \right) \Rightarrow d\left( {D,\left( {SBC} \right)} \right) = d\left( {A,\left( {SBC} \right)} \right)\).

Trong mặt phẳng \(\left( {SAB} \right)\), kẻ \(AH \bot SB\) tại \(H\). (1)

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{BC \bot AB}\\{BC \bot SA}\end{array} \Rightarrow BC \bot \left( {SAB} \right) \Rightarrow AH \bot BC} \right.\). (2)

Từ (1) và (2) suy ra \(AH \bot \left( {SBC} \right)\) hay \(d\left( {A,\left( {SBC} \right)} \right) = AH\).

Tam giác \(SAB\) vuông tại \(A\) có đường cao \(AH\) nên:

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật với \(AB = a\sqrt 2 \), \(AC = a\sqrt 3 \). (ảnh 1)

\(\frac{1}{{A{H^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{B^2}}} \Rightarrow AH = \frac{{SA \cdot AB}}{{\sqrt {S{A^2} + A{B^2}} }} = \frac{{2a \cdot a\sqrt 2 }}{{\sqrt {4{a^2} + 2{a^2}} }} = \frac{{2a\sqrt 3 }}{3}{\rm{. }}\)

Vậy \(d\left( {D,\left( {SBC} \right)} \right) = d\left( {A,\left( {SBC} \right)} \right) = AH = \frac{{2a\sqrt 3 }}{3}\).

Trong mặt phẳng \(\left( {SAD} \right)\), kẻ \(AK \bot SD\) tại \(K\). (3)

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{AB \bot SA}\\{AB \bot AD}\end{array} \Rightarrow AB \bot \left( {SAD} \right) \Rightarrow AB \bot AK} \right.\).(4)

Từ (3) và (4) suy ra \(AK\) là đường vuông góc chung của hai đường thẳng chéo nhau \(AB,SD\).

Tam giác \(ACD\) vuông tại \(D\) nên \(AD = \sqrt {A{C^2} - C{D^2}} = \sqrt {3{a^2} - 2{a^2}} = a\).

Tam giác \(SAD\) vuông tại \(A\) có đường cao \(AK\) nên

\(\frac{1}{{A{K^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{D^2}}} \Rightarrow AK = \frac{{SA \cdot AD}}{{\sqrt {S{A^2} + A{D^2}} }} = \frac{{2a \cdot a}}{{\sqrt {4{a^2} + {a^2}} }} = \frac{{2a\sqrt 5 }}{5}{\rm{. }}\)

Vậy \(d\left( {AB,SD} \right) = AK = \frac{{2a\sqrt 5 }}{5}\).

Diện tích đáy hình chóp là: \({S_{ABCD}} = a \cdot a\sqrt 2 = {a^2}\sqrt 2 \).

Thể tích khối chóp cần tìm là: \({V_{S.ABCD}} = \frac{1}{3}SA \cdot {S_{ABCD}} = \frac{1}{3} \cdot 2a \cdot {a^2}\sqrt 2 = \frac{{2\sqrt 2 {a^3}}}{3}{\rm{ }}\)(đơn vị thể tích).

Đáp án:       a) Đúng,      b) Sai,                    c) Đúng,      d) Sai.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP