Câu hỏi:

14/01/2025 1,832 Lưu

Cho hình chóp \(S.ABC\) có mặt bên \(\left( {SAB} \right)\) vuông góc với mặt đáy và tam giác \(SAB\) đều cạnh \(2a\). Biết tam giác \(ABC\) vuông tại \(C\) và cạnh \(AC = a\sqrt 3 \).

a) \(SH \bot \left( {ABC} \right)\) với \(H\) là trung điểm của \(AB\).

b) \(d\left( {S,\left( {ABC} \right)} \right) = a\sqrt 3 \).

c) \(d\left( {C,\left( {SAB} \right)} \right) = \frac{{a\sqrt 3 }}{3}\).

d) Thể tích của khối chóp \(S.ABC\) bằng \(\frac{{{a^3}}}{6}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình chóp \(S.ABC\) có mặt bên \(\left( {SAB} \right)\) vuông góc với mặt đáy và tam giác \(SAB\) đều cạnh \(2a\). (ảnh 1)

Ta có \(H\) là trung điểm của \(AB\), mà tam giác \(SAB\) đều nên \(SH \bot AB\).

Ngoài ra \(\left( {SAB} \right) \bot \left( {ABC} \right)\) nên \(SH \bot \left( {ABC} \right)\).

Ta có: \(d\left( {S,\left( {ABC} \right)} \right) = SH = \frac{{2a \cdot \sqrt 3 }}{2} = a\sqrt 3 \) (do tam giác \(SAB\) đều cạnh \(2a)\).

Kẻ đường cao \(CK\) của tam giác \(ABC\).

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{CK \bot AB}\\{CK \bot SH}\end{array} \Rightarrow CK \bot \left( {SAB} \right) \Rightarrow d\left( {C,\left( {SAB} \right)} \right) = CK} \right.\).

Xét tam giác \(ABC\) vuông tại \(C\) có: \(BC = \sqrt {A{B^2} - A{C^2}}  = \sqrt {4{a^2} - 3{a^2}}  = a\).

Có \(CK = \frac{{CA \cdot CB}}{{AB}} = \frac{{a\sqrt 3  \cdot a}}{{2a}} = \frac{{a\sqrt 3 }}{2}\). Vậy \(d\left( {C,\left( {SAB} \right)} \right) = CK = \frac{{a\sqrt 3 }}{2}\).

Diện tích đáy hình chóp là: \({S_{\Delta ABC}} = \frac{1}{2}AC \cdot BC = \frac{1}{2}a\sqrt 3  \cdot a = \frac{{{a^2}\sqrt 3 }}{2}\).

Thể tích khối chóp là: \({V_{S \cdot ABC}} = \frac{1}{3}SH \cdot {S_{\Delta ABC}} = \frac{1}{3} \cdot a\sqrt 3  \cdot \frac{{{a^2}\sqrt 3 }}{2} = \frac{{{a^3}}}{2}\).

Đáp án:       a) Đúng,      b) Đúng,     c) Sai,                    d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho lăng trụ đều \(ABC.A'B'C'\). Biết rằng góc nhị diện \(\left[ {A,BC,A'} \right]\) có số đo bằng \(30^\circ \), tam giác  (ảnh 1)

Đặt \(AB = x,\left( {x > 0} \right)\), gọi \(M\) là trung điểm \(BC\).

Ta có \[\left\{ \begin{array}{l}AM \bot BC\\A'M \bot BC\end{array} \right.\], suy ra \(\widehat {A'MA}\) là góc phẳng nhị diện của góc nhị diện \(\left[ {A,BC,A'} \right]\)\[ \Rightarrow \widehat {A'MA} = 30^\circ \].

Xét \(\Delta A'AM\), có \[A'M = \frac{{AM}}{{cos30^\circ }} = \frac{{x\sqrt 3 }}{2} \cdot \frac{2}{{\sqrt 3 }} = x\].

\({S_{A'BC}} = 8 \Leftrightarrow \frac{1}{2}A'M \cdot BC = 8 \Leftrightarrow {x^2} = 16 \Rightarrow x = 4\).

Suy ra \(A'A = AM \cdot \tan 30^\circ  = \frac{{4 \cdot \sqrt 3 }}{2} \cdot \frac{1}{{\sqrt 3 }} = 2\); \({S_{ABC}} = \frac{{16 \cdot \sqrt 3 }}{4} = 4\sqrt 3 \).

Vậy \({V_{ABC.A'B'C'}} = A'A \cdot {S_{ABC}} = 2 \cdot 4\sqrt 3  = 8\sqrt 3 \). Chọn A.

Lời giải

Ta có: \(AD\,{\rm{//}}\,BC \Rightarrow AD\,{\rm{//}}\,\,\left( {SBC} \right) \Rightarrow d\left( {D,\left( {SBC} \right)} \right) = d\left( {A,\left( {SBC} \right)} \right)\).

Trong mặt phẳng \(\left( {SAB} \right)\), kẻ \(AH \bot SB\) tại \(H\). (1)

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{BC \bot AB}\\{BC \bot SA}\end{array} \Rightarrow BC \bot \left( {SAB} \right) \Rightarrow AH \bot BC} \right.\). (2)

Từ (1) và (2) suy ra \(AH \bot \left( {SBC} \right)\) hay \(d\left( {A,\left( {SBC} \right)} \right) = AH\).

Tam giác \(SAB\) vuông tại \(A\) có đường cao \(AH\) nên:

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật với \(AB = a\sqrt 2 \), \(AC = a\sqrt 3 \). (ảnh 1)

\(\frac{1}{{A{H^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{B^2}}} \Rightarrow AH = \frac{{SA \cdot AB}}{{\sqrt {S{A^2} + A{B^2}} }} = \frac{{2a \cdot a\sqrt 2 }}{{\sqrt {4{a^2} + 2{a^2}} }} = \frac{{2a\sqrt 3 }}{3}{\rm{. }}\)

Vậy \(d\left( {D,\left( {SBC} \right)} \right) = d\left( {A,\left( {SBC} \right)} \right) = AH = \frac{{2a\sqrt 3 }}{3}\).

Trong mặt phẳng \(\left( {SAD} \right)\), kẻ \(AK \bot SD\) tại \(K\). (3)

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{AB \bot SA}\\{AB \bot AD}\end{array} \Rightarrow AB \bot \left( {SAD} \right) \Rightarrow AB \bot AK} \right.\).(4)

Từ (3) và (4) suy ra \(AK\) là đường vuông góc chung của hai đường thẳng chéo nhau \(AB,SD\).

Tam giác \(ACD\) vuông tại \(D\) nên \(AD = \sqrt {A{C^2} - C{D^2}} = \sqrt {3{a^2} - 2{a^2}} = a\).

Tam giác \(SAD\) vuông tại \(A\) có đường cao \(AK\) nên

\(\frac{1}{{A{K^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{D^2}}} \Rightarrow AK = \frac{{SA \cdot AD}}{{\sqrt {S{A^2} + A{D^2}} }} = \frac{{2a \cdot a}}{{\sqrt {4{a^2} + {a^2}} }} = \frac{{2a\sqrt 5 }}{5}{\rm{. }}\)

Vậy \(d\left( {AB,SD} \right) = AK = \frac{{2a\sqrt 5 }}{5}\).

Diện tích đáy hình chóp là: \({S_{ABCD}} = a \cdot a\sqrt 2 = {a^2}\sqrt 2 \).

Thể tích khối chóp cần tìm là: \({V_{S.ABCD}} = \frac{1}{3}SA \cdot {S_{ABCD}} = \frac{1}{3} \cdot 2a \cdot {a^2}\sqrt 2 = \frac{{2\sqrt 2 {a^3}}}{3}{\rm{ }}\)(đơn vị thể tích).

Đáp án:       a) Đúng,      b) Sai,                    c) Đúng,      d) Sai.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP