Câu hỏi:

19/01/2025 238 Lưu

Gieo hai con xúc xắc cân đối, đồng chất. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc xắc lớn hơn 10 hoặc bằng 10, biết rằng có ít nhất một con đã ra mặt 5 chấm.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi biến cố A: “Ít nhất một con đã ra mặt 5 chấm”.

Biến cố B: “Tổng số chấm xuất hiện trên hai con xúc xắc lớn hơn 10 hoặc bằng 10”.

Cần tính \(P\left( {B|A} \right)\). Ta có \(P\left( A \right) = 1 - {\left( {\frac{5}{6}} \right)^2} = \frac{{11}}{{36}}\).

Các trường hợp thuận lợi cho biến cố \[A \cap B\] là: \(\left( {5;5} \right),\left( {5;6} \right),\left( {6;5} \right)\). Suy ra \(P\left( {AB} \right) = \frac{3}{{36}}\).

Do đó \(P\left( {B|A} \right) = \frac{3}{{36}}:\frac{{11}}{{36}} = \frac{3}{{11}}\). Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Do \(M\) thuộc mặt phẳng \(\left( P \right)\)\(MA = MB\) nên \(M\) thuộc giao tuyến của mặt phẳng \(\left( P \right)\) và mặt phẳng \(\left( Q \right)\), trong đó \(\left( Q \right)\) là mặt phẳng trung trực của đoạn thẳng \(AB\).

Tọa độ trung điểm của \(AB\)\(I\left( {2;1; - 1} \right)\)\(\overrightarrow {AB} = \left( {0; - 2; - 2} \right)\).

Mặt phẳng \(\left( Q \right)\) đi qua \(I\left( {2;1; - 1} \right)\) và có vectơ pháp tuyến \(\overrightarrow {{n_Q}} = \left( {0;1;1} \right)\) có phương trình là

\(\left( {y - 1} \right) + \left( {z + 1} \right) = 0 \Leftrightarrow y + z = 0\).

Gọi \(d\) là giao tuyến của hai mặt phẳng \(\left( P \right),\left( Q \right)\).

Gọi \(M\left( {x;y;z} \right) \in d\). Khi đó tọa độ điểm \(M\) là nghiệm của hệ \(\left\{ \begin{array}{l}y + z = 0\\x + 2y - z - 1 = 0\end{array} \right.\).

Đặt \(z = t\). Khi đó ta có \(\left\{ \begin{array}{l}x = 1 + 3t\\y = - t\\z = t\end{array} \right.\).

Suy ra phương trình tham số của \(d:\left\{ \begin{array}{l}x = 1 + 3t\\y = - t\\z = t\end{array} \right.\). Mà \(M \in d\)\( \Rightarrow M\left( {1 + 3t; - t;t} \right)\).

Ta có \(\overrightarrow {AM} = \left( {3t - 1; - t - 2;t} \right),\overrightarrow {BM} = \left( {3t - 1; - t;t + 2} \right)\).

Ta có \(\cos \left( {\overrightarrow {AM} ,\overrightarrow {BM} } \right) = \frac{{{{\left( {3t - 1} \right)}^2} + 2\left( {{t^2} + 2t} \right)}}{{{{\left( {3t - 1} \right)}^2} + {t^2} + {{\left( {t + 2} \right)}^2}}}\)

\( = \frac{{11{t^2} - 2t + 1}}{{11{t^2} - 2t + 5}} = 1 - \frac{4}{{11{t^2} - 2t + 5}} = 1 - \frac{4}{{11{{\left( {t - \frac{1}{{11}}} \right)}^2} + \frac{{54}}{{11}}}}\).

Suy ra \(\widehat {AMB}\) lớn nhất khi và chỉ khi \(t = \frac{1}{{11}}\).

Do đó \(M\left( {\frac{{14}}{{11}}; - \frac{1}{{11}};\frac{1}{{11}}} \right)\)\( \Rightarrow S = a + b + c = \frac{{14}}{{11}} \approx 1,27\).

Đáp án: \(1,27\).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP