Tìm số nghiệm của phương trình \[\sqrt {{\rm{4}} - {{\rm{x}}^{\rm{2}}}} {\rm{sin2x = 0}}\]
A. 4
B. 5
C. 3
D. 6
Quảng cáo
Trả lời:

Điều kiện :\[{\rm{4}} - {{\rm{x}}^{\rm{2}}} \ge 0 \Leftrightarrow {\rm{x}} \in \left[ { - 2;2} \right]\]
\[\sqrt {{\rm{4}} - {{\rm{x}}^{\rm{2}}}} {\rm{sin2x = 0}} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{4 - {x^2} = 0}\\{\sin 2x = 0}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \pm 2}\\{x = \frac{{k\pi }}{2},k \in \mathbb{Z}}\end{array}} \right.\]
So sánh điều kiện :\[{\rm{x}} \in \left[ { - 2;2} \right] \Leftrightarrow - 2 \le \frac{{{\rm{k\pi }}}}{{\rm{2}}} \le 2 \Leftrightarrow - \frac{4}{{\rm{\pi }}} \le {\rm{k}} \le \frac{4}{{\rm{\pi }}}\]
Vậy\[{\rm{x}} \in \left\{ { \pm 2;0; \pm \frac{{\rm{\pi }}}{{\rm{2}}}} \right\}\]
Đáp án cần chọn là: B
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \[ - \frac{{35}}{{36}}{\rm{\pi }}\]
B. \[ - \frac{{11}}{{36}}{\rm{\pi }}\]
C. \[ - \frac{{{\rm{11\pi }}}}{{{\rm{12}}}}\]
D. \[ - \frac{{\rm{\pi }}}{{{\rm{12}}}}\]
Lời giải
\[{\mathop{\rm co}\nolimits} {\rm{s}}\left( {{\rm{4x}} - \frac{{\rm{\pi }}}{{\rm{6}}}} \right){\rm{ + si}}{{\rm{n}}^{\rm{2}}}{\rm{x = co}}{{\rm{s}}^{\rm{2}}}{\rm{x}} \Leftrightarrow {\mathop{\rm c}\nolimits} {\rm{os}}\left( {{\rm{4x}} - \frac{{\rm{\pi }}}{{\rm{6}}}} \right){\rm{ = co}}{{\rm{s}}^{\rm{2}}}{\rm{x}} - {\rm{si}}{{\rm{n}}^{\rm{2}}}{\rm{x}}\]
\[ \Leftrightarrow {\mathop{\rm c}\nolimits} {\rm{os}}\left( {{\rm{4x}} - \frac{{\rm{\pi }}}{{\rm{6}}}} \right){\rm{ = cos}}2x\]
\[ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{{\rm{4x}} - \frac{{\rm{\pi }}}{{\rm{6}}}{\rm{ = }}2x + k2\pi }\\{{\rm{4x}} - \frac{{\rm{\pi }}}{{\rm{6}}}{\rm{ = }} - 2x + k2\pi }\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x\,{\rm{ = }}\,\,\frac{\pi }{{12}} + k\pi }\\{x\,{\rm{ = }}\,\,\frac{\pi }{{36}} + k\frac{\pi }{3}}\end{array}} \right.\left( {k \in \mathbb{Z}} \right)\]
Ta có mỗi họ nghiệm lần lượt có các nghiệm âm lớn nhất là: \[{{\rm{x}}_{\rm{1}}}{\rm{ = }}\frac{{\rm{\pi }}}{{{\rm{12}}}} - {\rm{\pi = }} - \frac{{{\rm{11\pi }}}}{{{\rm{12}}}}{\rm{;}}\,\,{{\rm{x}}_{\rm{2}}}{\rm{ = }}\frac{{\rm{\pi }}}{{{\rm{36}}}} - \frac{{\rm{\pi }}}{{\rm{3}}}{\rm{ = }} - \frac{{{\rm{11\pi }}}}{{{\rm{36}}}}\]
Vậy nghiệm âm lớn nhất của phương trình là \[{\rm{x = }} - \frac{{11}}{{36}}{\rm{\pi }}\]
Đáp án cần chọn là: B
Câu 2
A. \(\left[ {\begin{array}{*{20}{c}}{{\rm{x = }}\frac{{\rm{\pi }}}{{{\rm{12}}}}{\rm{ + k2\pi }}}\\{{\rm{x = }}\frac{{{\rm{11\pi }}}}{{{\rm{12}}}}{\rm{ + }}l{\rm{2\pi }}}\end{array}} \right.\left( {k,l \in \mathbb{Z}} \right)\)
B. \(\left[ {\begin{array}{*{20}{c}}{{\rm{x = }}\frac{{\rm{\pi }}}{{{\rm{12}}}}{\rm{ + k2\pi }}}\\{{\rm{x = }} - \frac{{\rm{\pi }}}{{{\rm{12}}}}{\rm{ + k2\pi }}}\end{array}} \right.\left( {k \in \mathbb{Z}} \right)\)
C. \({\rm{x = }}\frac{{\rm{\pi }}}{{{\rm{12}}}}{\rm{ + k2\pi }}\left( {k \in \mathbb{Z}} \right)\)
D. \({\rm{x = }}\frac{{{\rm{11\pi }}}}{{{\rm{12}}}}{\rm{ + k2\pi }}\,\left( {k \in \mathbb{Z}} \right)\)
Lời giải
\[{\rm{cosx = cos}}\frac{{\rm{\pi }}}{{{\rm{12}}}} \Rightarrow \left[ {\begin{array}{*{20}{c}}{{\rm{x = }}\frac{{\rm{\pi }}}{{{\rm{12}}}}{\rm{ + k2\pi }}}\\{{\rm{x = }} - \frac{{\rm{\pi }}}{{{\rm{12}}}}{\rm{ + k2\pi }}}\end{array}} \right.\left( {k \in \mathbb{Z}} \right)\]
Đáp án cần chọn là: B
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \[{\rm{m}} \ge 1\]
B. \[{\rm{m}} \in \mathbb{R}\bcancel{{}}\left( { - {\rm{1; 1}}} \right)\]
C. \[0 \le {\rm{m}} \le 1\]
D. m < 1
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.