Câu hỏi:

31/01/2025 136

Cho góc α thỏa mãn\[{\rm{\pi < \alpha < }}\frac{{{\rm{3\pi }}}}{{\rm{2}}}\]. Khẳng định nào sau đây đúng ?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

\[{\rm{\pi < \alpha < }}\frac{{{\rm{3\pi }}}}{{\rm{2}}} \Leftrightarrow {\rm{0 < }}\frac{{{\rm{3\pi }}}}{{\rm{2}}} - {\rm{\alpha < }}\frac{{\rm{\pi }}}{{\rm{2}}}\] nên\[\frac{{{\rm{3\pi }}}}{{\rm{2}}} - {\rm{\alpha }}\]thuộc góc phần tư thứ I.

\( \Rightarrow {\rm{tan}}\left( {\frac{{{\rm{3\pi }}}}{{\rm{2}}} - {\rm{\alpha }}} \right){\rm{ > 0}}\)

Chọn đáp án B.

Đáp án cần chọn là: B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có:\[{\rm{si}}{{\rm{n}}^{\rm{2}}}{\rm{\alpha = 1}} - {\rm{co}}{{\rm{s}}^{\rm{2}}}{\rm{\alpha = 1}} - \frac{{\rm{5}}}{{\rm{9}}}{\rm{ = }}\frac{{\rm{4}}}{{\rm{9}}} \Leftrightarrow {\rm{sin\alpha = \pm }}\frac{{\rm{2}}}{{\rm{3}}}\]

Do\[{\rm{\pi < \alpha < }}\frac{{{\rm{3\pi }}}}{{\rm{2}}}\]nên \[{\rm{sin\alpha < 0}}\]. Vậy\[{\rm{sin\alpha = }} - \frac{2}{3}\]

Chọn đáp án D.

Đáp án cần chọn là: D

Câu 2

Lời giải

Ở góc phần tư thứ I thì \[{\rm{sin\alpha > 0, cos\alpha > 0, tan\alpha > 0, cot\alpha > 0}}\]

Đáp án cần chọn là: A

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP