Câu hỏi:

10/02/2025 72 Lưu

Cho \(f\left( x \right) = a{x^2} + bx + c,\left( {a \ne 0} \right)\)\(\Delta = {b^2} - 4ac < 0\). Khẳng định nào sau đây là đúng?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Nếu \(f\left( x \right) = a{x^2} + bx + c,\left( {a \ne 0} \right)\)\(\Delta = {b^2} - 4ac < 0\) thì \(f\left( x \right)\) không đổi dấu trên \(\mathbb{R}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Theo đề ta có \(BM = 7 - x\) (điều kiện \(0 < x < 7\))

Xét \(\Delta ABM\) ta có \(AM = \sqrt {A{B^2} + B{M^2}} = \sqrt {{4^2} + {{\left( {7 - x} \right)}^2}} \).

Theo đề ta có \(\frac{{\sqrt {{4^2} + {{\left( {7 - x} \right)}^2}} }}{6} = \frac{x}{{10}}\).

Bình phương hai vế phương trình ta được \(\frac{{65 - 14x + {x^2}}}{{36}} = \frac{{{x^2}}}{{100}}\)\( \Leftrightarrow 1625 - 350x + 25{x^2} = 9{x^2}\)

\( \Leftrightarrow 1625 - 350x + 16{x^2} = 0\)\( \Leftrightarrow x \approx 15,2\) hoặc \(x \approx 6,7\).

Thử lại ta thấy giá trị 6,7 thỏa mãn.

Vậy hai người gặp nhau ở vị trí M cách C một khoảng 6,7 km.

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP