Câu hỏi:

10/02/2025 484 Lưu

Tổng tất cả các nghiệm của phương trình \(\sqrt {{x^2} + 2x - 3} = \sqrt {15 - 5x} \)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Bình phương hai vế của phương trình ta được \({x^2} + 2x - 3 = 15 - 5x\)\( \Leftrightarrow {x^2} + 7x - 18 = 0\)\( \Leftrightarrow x = 2\) hoặc \(x = - 9\).

Thay 2 giá trị của \(x\) vào phương trình ta thấy \(x = 2;x = - 9\) đều là nghiệm của phương trình.

Do đó tổng các nghiệm của phương trình là \( - 7\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Theo đề ta có \(BM = 7 - x\) (điều kiện \(0 < x < 7\))

Xét \(\Delta ABM\) ta có \(AM = \sqrt {A{B^2} + B{M^2}} = \sqrt {{4^2} + {{\left( {7 - x} \right)}^2}} \).

Theo đề ta có \(\frac{{\sqrt {{4^2} + {{\left( {7 - x} \right)}^2}} }}{6} = \frac{x}{{10}}\).

Bình phương hai vế phương trình ta được \(\frac{{65 - 14x + {x^2}}}{{36}} = \frac{{{x^2}}}{{100}}\)\( \Leftrightarrow 1625 - 350x + 25{x^2} = 9{x^2}\)

\( \Leftrightarrow 1625 - 350x + 16{x^2} = 0\)\( \Leftrightarrow x \approx 15,2\) hoặc \(x \approx 6,7\).

Thử lại ta thấy giá trị 6,7 thỏa mãn.

Vậy hai người gặp nhau ở vị trí M cách C một khoảng 6,7 km.

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP