Câu hỏi:

10/02/2025 1,780

Cho đường tròn \(\left( C \right)\) có tâm \(I\left( { - 1;2} \right)\) và tiếp xúc với đường thẳng \(\Delta :x - 2y + 7 = 0\). Khi đó

a) \(d\left( {I,\Delta } \right) = \frac{3}{{\sqrt 5 }}\).

b) Đường kính của đường tròn có độ dài bằng \(\frac{4}{{\sqrt 5 }}\).

c) Phương trình đường tròn là \({\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} = \frac{4}{5}\).

d) Đường tròn \(\left( C \right)\) tiếp xúc với đường thẳng \(\Delta \) tại điểm có hoành độ lớn hơn 0.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) S, b) Đ, c) Đ, d) S

a) Ta có \(d\left( {I,\Delta } \right) = \frac{{\left| { - 1 - 2.2 + 7} \right|}}{{\sqrt {{1^2} + {{\left( { - 2} \right)}^2}} }} = \frac{2}{{\sqrt 5 }}\).

b) Đường kính của đường tròn bằng \(2d\left( {I,\Delta } \right) = \frac{4}{{\sqrt 5 }}\).

c) Phương trình của đường tròn là \({\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} = \frac{4}{5}\).

d) Xét hệ \(\left\{ \begin{array}{l}{\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} = \frac{4}{5}\\x - 2y + 7 = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} = \frac{4}{5}\\x = 2y - 7\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{\left( {2y - 6} \right)^2} + {\left( {y - 2} \right)^2} = \frac{4}{5}\\x = 2y - 7\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}5{y^2} - 28y + \frac{{196}}{5} = 0\\x = 2y - 7\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}y = \frac{{14}}{5}\\x = - \frac{7}{5}\end{array} \right.\).

Vậy đường tròn \(\left( C \right)\) tiếp xúc với đường thẳng \(\Delta \) tại điểm có hoành độ nhỏ hơn 0.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: 11,2

Vật thể \(M\) chuyển động trên một đường thẳng. Đường thẳng đó đi qua \(A\left( {5;3} \right)\) và nhận \(\overrightarrow v \left( {1;2} \right)\) làm vectơ chỉ phương có dạng \(\left\{ \begin{array}{l}x = 5 + t\\y = 3 + 2t\end{array} \right.\).

Khi vật thể \(M\) chuyển động được 5 giây thì vật ở vị trí \(B\) có tọa độ là \(\left\{ \begin{array}{l}x = 5 + 5 = 10\\y = 3 + 2.5 = 13\end{array} \right.\).

Quãng đường vật thể \(M\) đi được là \(AB = \sqrt {{{\left( {10 - 5} \right)}^2} + {{\left( {13 - 3} \right)}^2}} = 5\sqrt 5 \approx 11,2\).

Lời giải

Một bánh xe đạp hình tròn khi gắn trên hệ trục tọa độ \(Oxy\) có phương trình \(\left( C \right):{\left (ảnh 1)

Đường tròn \(\left( C \right)\) có tâm \(I\left( { - 1; - 2} \right)\)\(R = 4\).

\(M\) nằm trên đường tròn nên \(IM = 4\).

Gọi \(H\) là trung điểm của \(IM\) \( \Rightarrow IH = \frac{1}{2}IM = 2\).

Tam giác \(AIM\) cân tại \(A\) nên \(AH \bot IM\). Suy ra \({S_{IAM}} = \frac{1}{2}AH.IM \Rightarrow IH = \frac{{4.2}}{4} = 2\).

Do đó ta có \(I{A^2} = I{H^2} + A{H^2} = {2^2} + {2^2} = 8 \Rightarrow IA = 2\sqrt 2 \).

Ta thấy điểm \(A\) cách điểm \(I\) một khoảng không đổi nên quỹ tích điểm \(A\) là đường tròn tâm \(I\) bán kính \(2\sqrt 2 \).

Do đó điểm \(A\) di chuyển trên đường tròn có phương trình là \({\left( {x + 1} \right)^2} + {\left( {y + 2} \right)^2} = 8\).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP