Câu hỏi:

10/03/2025 176 Lưu

Khai triển nhị thức \({\left( {a + b} \right)^5}\) ta được biểu thức nào sau đây?

A. \({a^5} + 5{a^4}b + 10ab + 10{a^2}{b^3} + 5a{b^4} + {b^5}\).

B.\({a^5} - 5{a^4}b + 10{a^2}{b^3} - 10{a^2}{b^3} + 5a{b^4} - {b^5}\).

C. \({a^5} + 5{a^4}b + 10{a^3}{b^2} + 10{a^2}{b^3} + 5a{b^4} + {b^5}\).

D. \({a^5} + {a^4}b + {a^3}{b^2} + {a^2}{b^3} + a{b^4} + {b^5}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

\({\left( {a + b} \right)^5} = {a^5} + 5{a^4}b + 10{a^3}{b^2} + 10{a^2}{b^3} + 5a{b^4} + {b^5}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

a) Đ, b) Đ, c) S, d) Đ

a) Số phần tử của không gian mẫu bằng \(C_{12}^5\).

b) Để lấy được 5 viên bi cùng màu thì 5 viên bi lấy được có màu xanh.

Do đó số phần tử của biến cố “5 viên bi lấy ra cùng màu” là \(C_6^5\).

c) Xác suất của biến cố “5 viên bi lấy ra không có bi vàng” là \(P = \frac{{C_{10}^5}}{{C_{12}^5}} = \frac{7}{{22}}\).

d) Xác suất của biến cố “5 viên bi lấy ra có ít nhất một bi vàng” là \(P = 1 - \frac{7}{{22}} = \frac{{15}}{{22}}\).

Lời giải

Hướng dẫn giải

Trả lời: 3,75

Quỹ đạo của quả bóng là một phần parabol có dạng: \(h\left( t \right) = a{t^2} + bt\).

Khi \(t = 2\) quả bóng lên đến vị trí cao nhất là 8m.

Suy ra \(\left\{ \begin{array}{l} - \frac{b}{{2a}} = 2\\4a + 2b = 8\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}4a + b = 0\\4a + 2b = 8\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = - 2\\b = 8\end{array} \right.\). Do đó \(h\left( t \right) = - 2{t^2} + 8t\).

Khi \(h = 1,875\) thì \( - 2{t^2} + 8t = 1,875\)\( \Leftrightarrow t = 0,25\) hoặc \(t = 3,75\).

Vậy khi \(t = 3,75\) giây thì độ cao của quả bóng khi rơi xuống bằng 1,875 m.

Câu 3

A. \(\left( { - \infty ;1} \right)\).

B. \(\left( {1; + \infty } \right)\).

C. \(\left( { - \infty ;2} \right)\).

D. \(\left( { - 2; + \infty } \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP