Câu hỏi:

10/03/2025 234 Lưu

Có 30 tấm thẻ đánh số từ 1 đến 30. Chọn ngẫu nhiên ra 10 tấm thẻ. Tính xác suất để có 5 tấm thẻ mang số lẻ, 5 tấm thẻ mang số chẵn, trong đó chỉ có đúng 1 tấm thẻ mang số chia hết cho 10.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Gọi \(\Omega \) là không gian mẫu \( \Rightarrow n\left( \Omega \right) = C_{30}^{10}\).

Gọi \(A\) là biến cố “Chọn được 5 tấm thẻ mang số lẻ, 5 tấm thẻ mang số chẵn, trong đó chỉ có đúng 1 tấm thẻ mang số chia hết cho 10”.

Từ 1 đến 30 có 15 số lẻ, 12 số chẵn không chia hết cho 10 và 3 số chia hết cho 10.

Lấy ra 5 thẻ mang số lẻ có \(C_{15}^5\) cách.

Lấy ra 4 thẻ mang số chẵn không chia hết cho 10 có \(C_{12}^4\) cách.

Lấy ra 1 thẻ mang số chia hết cho 10 có 3 cách.

Do đó \(n\left( A \right) = 3C_{15}^5C_{12}^4\).

Suy ra \(P\left( A \right) = \frac{{3C_{15}^5C_{12}^4}}{{C_{30}^{10}}} = \frac{{99}}{{667}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

a) Đ, b) Đ, c) S, d) Đ

a) Số phần tử của không gian mẫu bằng \(C_{12}^5\).

b) Để lấy được 5 viên bi cùng màu thì 5 viên bi lấy được có màu xanh.

Do đó số phần tử của biến cố “5 viên bi lấy ra cùng màu” là \(C_6^5\).

c) Xác suất của biến cố “5 viên bi lấy ra không có bi vàng” là \(P = \frac{{C_{10}^5}}{{C_{12}^5}} = \frac{7}{{22}}\).

d) Xác suất của biến cố “5 viên bi lấy ra có ít nhất một bi vàng” là \(P = 1 - \frac{7}{{22}} = \frac{{15}}{{22}}\).

Câu 2

Lời giải

Đáp án đúng là: A

Dựa vào đồ thị hàm số ta thấy hàm số đã cho nghịch biến trên khoảng \(\left( { - \infty ;1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP