Câu hỏi:

10/03/2025 314

PHẦN I. TRẮC NGHIỆM KHÁCH QUAN

A. TRẮC NGHIỆM NHIỀU PHƯƠNG ÁN LỰA CHỌN. Thí sinh trả lời từ câu 1 đến câu 12.

Cho tam thức bậc hai \(f\left( x \right) = a{x^2} + bx + c\left( {a \ne 0} \right)\), \(\Delta = {b^2} - 4ac\) và \(f\left( x \right)\) có dấu cùng dấu với hệ số \(a\) với mọi \(x \in \mathbb{R}\). Khẳng định đúng về dấu của \(\Delta \) là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

\(f\left( x \right)\) có dấu cùng dấu với hệ số \(a\) với mọi \(x \in \mathbb{R}\) khi \(\Delta < 0\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Xét \(A\) là biến cố liên quan đến phép thử T với không gian mẫu là \(\Omega \). Mệnh đề nào dưới đây sai?

Lời giải

Đáp án đúng là: B

\(0 \le P\left( A \right) \le 1\).

Lời giải

Hướng dẫn giải

Trong mặt phẳng \(\left( {Oxy} \right)\). Giả sử phương trình chính tắc của elip \(\left( E \right)\) là \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\left( {a > b > 0} \right)\).

Vì \(\left( E \right)\) đi qua \({A_2}\left( {3;0} \right),{B_1}\left( {0;2} \right)\) nên ta có \(\left\{ \begin{array}{l}\frac{9}{{{a^2}}} = 1\\\frac{4}{{{b^2}}} = 1\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{a^2} = 9\\{b^2} = 4\end{array} \right.\).

Vậy \(\left( E \right):\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\).

Tại điểm cách điểm chính giữa \(O\) của đế ô thoáng \(60\)cm tương ứng với 2 đơn vị trên mặt phẳng tọa độ.

Suy ra chiều cao của ô thoáng là \(\frac{{{2^2}}}{9} + \frac{{{h^2}}}{4} = 1\)\( \Rightarrow h = \frac{{2\sqrt 5 }}{3}\) tương ứng với \(20\sqrt 5 \) cm trên thực tế.

Câu 3

Cho đồ thị của hàm số bậc hai \(f\left( x \right)\) như hình vẽ

Cho đồ thị của hàm số bậc hai   f ( x )   như hình vẽ    Nghiệm của bất phương trình   f ( x ) > 0   là (ảnh 1)

Nghiệm của bất phương trình \(f\left( x \right) > 0\) là

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay