Câu hỏi:

11/03/2025 960

Câu 3-5 (1,5 điểm) 

Cho hai biểu thức A=x+33x  B=xx+3+2xx33x+9x9  với x0;  x9 .

1) Tính giá trị của A biểu thức khi x=16.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Thay \(x = 16\) (thỏa mãn) vào biểu thức \(A,\) ta được:

\[A = \frac{{\sqrt {16} + 3}}{{3 - \sqrt {16} }} = \frac{{4 + 3}}{{3 - 4}} = - 7.\]

Vậy \(A = - 7\) khi \(x = 16.\)

Câu hỏi cùng đoạn

Câu 2:

2) Rút gọn B.

Xem lời giải

verified Lời giải của GV VietJack

Với \(x \ge 0;\,\,x \ne 9\), ta có:

\(B = \frac{{\sqrt x }}{{\sqrt x + 3}} + \frac{{2\sqrt x }}{{\sqrt x - 3}} - \frac{{3x + 9}}{{x - 9}}\)

 \( = \frac{{\sqrt x \left( {\sqrt x - 3} \right)}}{{\left( {\sqrt x + 3} \right)\left( {\sqrt x - 3} \right)}} + \frac{{2\sqrt x \left( {\sqrt x + 3} \right)}}{{\left( {\sqrt x + 3} \right)\left( {\sqrt x - 3} \right)}} - \frac{{3x + 9}}{{\left( {\sqrt x + 3} \right)\left( {\sqrt x - 3} \right)}}\)

 \( = \frac{{x - 3\sqrt x + 2x + 6\sqrt x - 3x - 9}}{{\left( {\sqrt x + 3} \right)\left( {\sqrt x - 3} \right)}}\)\( = \frac{{3\sqrt x - 9}}{{\left( {\sqrt x + 3} \right)\left( {\sqrt x - 3} \right)}}\)

 \( = \frac{{3\left( {\sqrt x - 3} \right)}}{{\left( {\sqrt x + 3} \right)\left( {\sqrt x - 3} \right)}}\)\( = \frac{3}{{\sqrt x + 3}}.\)

Vậy với \(x \ge 0;\,\,x \ne 9\) thì \(B = \frac{3}{{\sqrt x + 3}}.\)

Câu 3:

3) Tìm các giá trị của x sao cho AB1 .

Xem lời giải

verified Lời giải của GV VietJack

Với \(x \ge 0;\,\,x \ne 9\), ta có:

\[AB = \frac{{\sqrt x + 3}}{{3 - \sqrt x }} \cdot \frac{3}{{\sqrt x + 3}} = \frac{3}{{3 - \sqrt x }}.\]

Theo bài, \(AB \le 1\) nên \(\frac{3}{{3 - \sqrt x }} \le 1\)

Hay \(\frac{{ - 3}}{{\sqrt x - 3}} \le 1\)

\(1 + \frac{3}{{\sqrt x - 3}} \ge 0\)

\(\frac{{\sqrt x - 3 + 3}}{{\sqrt x - 3}} \ge 0\)

\(\frac{{\sqrt x }}{{\sqrt x - 3}} \ge 0.\,\,\,\left( * \right)\)

Trường hợp 1: Nếu \(x = 0,\) ta có \(\sqrt x = 0\)\(\sqrt x - 3 = - 3 \ne 0\) nên \(\frac{{\sqrt x }}{{\sqrt x - 3}} = 0\) nên \(x = 0\) là một nghiệm của bất phương trình (*0.

Trường hợp 2: Nếu \(x > 0,\,\,x \ne 9\) thì \(\sqrt x > 0\) nên giải bất phương trình (*) ta có:

\(\sqrt x - 3 > 0\) hay \(\sqrt x > 3\) suy ra \(x > 9.\)

Kết hợp với điều kiện \(x \ge 0;\,\,x \ne 9\) ta có \(x > 9.\)

Vậy \(x = 0\)\(x > 9\) thì \(A.B \le 1\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Tổng trị giá xuất khẩu hàng hóa của nước ta trong quý I của giai đoạn \(2020 - 2022\) là:

\(63,4 + 58,76 + 89,1 = 211,26\) (tỷ USD).

b) Trị giá xuất khẩu trong quý I/2021 chiếm số phần trăm so với tổng trị trị giá xuất khẩu hàng hóa của nước ta trong quý I của giai đoạn \(2020 - 2022\) là:

\(\frac{{58,76}}{{211,26}} \cdot 100\% \approx 27,8\% \).

Lời giải

1) Gọi \(x\)\(y\) lần lượt là thời gian để vòi thứ nhất và vòi thứ hai chảy một mình đầy bể \(\left( {x,y > 0} \right)\) (phút).

Sau một phút, vòi thứ nhất chảy một mình được \(\frac{1}{x}\) (bể), vòi thứ hai chảy một mình được \(\frac{1}{y}\) (bể).

Hai vòi cùng chảy thì sau \[1\] giờ \[20\] phút \((80\) phút) đầy bể nên sau một phút, cả hai vòi cùng chảy được \(\frac{1}{{80}}\) (bể).

Khi đó, ta có phương trình: \(\frac{1}{x} + \frac{1}{y} = \frac{1}{{80}}.\,\,\,\left( 1 \right)\)

Vòi thứ nhất chảy trong \[10\] phút rồi khóa lại, vòi thứ hai chảy tiếp trong \[12\] phút được \(\frac{2}{{15}}\) bể nên ta có phương trình: \(\frac{{10}}{x} + \frac{{12}}{y} = \frac{2}{{15}}.\,\,\,\left( 2 \right)\)

Từ (1) và (2), ta có hệ phương trình: \(\left\{ \begin{array}{l}\frac{1}{x} + \frac{1}{y} = \frac{1}{{80}}\,\,\,\,\,\,\,\left( 1 \right)\\\frac{{10}}{x} + \frac{{12}}{y} = \frac{2}{{15}}\,\,\,\,\left( 2 \right)\end{array} \right.\)

Nhân hai vế của phương trình (1) với 10, ta được hệ phương trình \(\left\{ \begin{array}{l}\frac{{10}}{x} + \frac{{10}}{y} = \frac{1}{8}\,\,\,\,\,\,\,\left( 3 \right)\\\frac{{10}}{x} + \frac{{12}}{y} = \frac{2}{{15}}\,\,\,\,\left( 2 \right)\end{array} \right.\)

Trừ từng vế của phương trình (2) cho phương trình (3), ta được:

\(\frac{2}{y} = \frac{1}{{120}}\) suy ra \(y = 2 \cdot 120 = 240\) (phút) \[ = 4\] giờ.

Thay \(y = 240\) vào phương trình (1), ta được:

\(\frac{1}{x} + \frac{1}{{240}} = \frac{1}{{80}}\) suy ra \(\frac{1}{x} = \frac{1}{{80}} - \frac{1}{{240}} = \frac{1}{{120}}\) nên \(x = 120\) phút \( = 2\) giờ.

Vậy vòi thứ nhất chảy riêng đầy bể trong \(2\) giờ, vòi thứ hai trong \(4\) giờ.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP