Câu hỏi:
11/03/2025 298Câu 6-8. (2,5 điểm)
Quảng cáo
Trả lời:
1) Gọi \(x\) và \(y\) lần lượt là thời gian để vòi thứ nhất và vòi thứ hai chảy một mình đầy bể \(\left( {x,y > 0} \right)\) (phút).
Sau một phút, vòi thứ nhất chảy một mình được \(\frac{1}{x}\) (bể), vòi thứ hai chảy một mình được \(\frac{1}{y}\) (bể).
Hai vòi cùng chảy thì sau \[1\] giờ \[20\] phút \((80\) phút) đầy bể nên sau một phút, cả hai vòi cùng chảy được \(\frac{1}{{80}}\) (bể).
Khi đó, ta có phương trình: \(\frac{1}{x} + \frac{1}{y} = \frac{1}{{80}}.\,\,\,\left( 1 \right)\)
Vòi thứ nhất chảy trong \[10\] phút rồi khóa lại, vòi thứ hai chảy tiếp trong \[12\] phút được \(\frac{2}{{15}}\) bể nên ta có phương trình: \(\frac{{10}}{x} + \frac{{12}}{y} = \frac{2}{{15}}.\,\,\,\left( 2 \right)\)
Từ (1) và (2), ta có hệ phương trình: \(\left\{ \begin{array}{l}\frac{1}{x} + \frac{1}{y} = \frac{1}{{80}}\,\,\,\,\,\,\,\left( 1 \right)\\\frac{{10}}{x} + \frac{{12}}{y} = \frac{2}{{15}}\,\,\,\,\left( 2 \right)\end{array} \right.\)
Nhân hai vế của phương trình (1) với 10, ta được hệ phương trình \(\left\{ \begin{array}{l}\frac{{10}}{x} + \frac{{10}}{y} = \frac{1}{8}\,\,\,\,\,\,\,\left( 3 \right)\\\frac{{10}}{x} + \frac{{12}}{y} = \frac{2}{{15}}\,\,\,\,\left( 2 \right)\end{array} \right.\)
Trừ từng vế của phương trình (2) cho phương trình (3), ta được:
\(\frac{2}{y} = \frac{1}{{120}}\) suy ra \(y = 2 \cdot 120 = 240\) (phút) \[ = 4\] giờ.
Thay \(y = 240\) vào phương trình (1), ta được:
\(\frac{1}{x} + \frac{1}{{240}} = \frac{1}{{80}}\) suy ra \(\frac{1}{x} = \frac{1}{{80}} - \frac{1}{{240}} = \frac{1}{{120}}\) nên \(x = 120\) phút \( = 2\) giờ.
Vậy vòi thứ nhất chảy riêng đầy bể trong \(2\) giờ, vòi thứ hai trong \(4\) giờ.
Câu hỏi cùng đoạn
Câu 2:
Lời giải của GV VietJack
Gọi \(a,\,\,b\) lần lượt là chiều dài, chiều rộng ban đầu của mảnh đất hình chữ nhật \(\left( {a > b > 0} \right)\) (m).
Diện tích ban đầu của mảnh đất là: \(ab\) (m2).
Chu vi ban đầu của mảnh đất là:
\[2\left( {a + b} \right) = 82\] suy ra \[a + b = 41\] (1) (do đó \(0 < b < a < 41).\)
Sau khi tăng chiều dài thêm \[5\,{\rm{m}}\] thì mảnh đất có chiều dài mới là: \(a + 5{\rm{\;(m)}}{\rm{.}}\)
Sau khi gấp đôi chiều rộng thì mảnh đất có chiều rộng mới là: \(2b{\rm{\;(m)}}{\rm{.}}\)
Diện tích mới của mảnh đất là: \[\left( {a + 5} \right)2b\,\,\left( {{{\rm{m}}^{\rm{2}}}} \right).\]
Theo đề bài, diện tích của hình mới tăng thêm \[560\,\,{{\rm{m}}^2}\] nên ta có phương trình:
\[\left( {a + 5} \right)2b = ab + 560\] (2)
Từ (1) và (2) ta có hệ phương trình: \[\left\{ \begin{array}{l}a + b = 41\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\\left( {a + 5} \right)2b = ab + 560\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\]
Từ (1) ta có \[b = 41 - a\], thay vào phương trình (2), ta được:
\(\left( {a + 5} \right)2\left( {41 - a} \right) = \;a\left( {41 - a} \right) + \;560\)
Giải phương trình:
\(\left( {a + 5} \right)2\left( {41 - a} \right) = \;a\left( {41 - a} \right) + \;560\)
\(\left( {a\; + \;5} \right)\left( {82\; - \;2a} \right)\; = \;a\left( {41\; - \;a} \right)\; + \;560\)
\(82a - 2{a^2}\; + \;410\; - 10a\; = \;41a\; - \;{a^2}\; + \;560\)
\({a^2} - 31a + 150 = 0\)
\({a^2} - 6a - 25a + 150 = 0\)
\(a\left( {a - 6} \right) - 25\left( {a - 6} \right) = 0\)
\(\left( {a - 6} \right)\left( {a - 25} \right) = 0\)
\(a = \;6\) hoặc \(a = 25\).
Nếu \(a = 6\) thì \[b = 41 - 6 = 35\] (không thỏa mãn \(a > b).\)
Nếu \(a = 25\) thì \(b = 41 - 25 = 16\) (thỏa mãn).
Vậy chiều dài, chiều rộng ban đầu lần lượt là \[25\,{\rm{m}}\] và \[16\,{\rm{m}}\].
Câu 3:
Lời giải của GV VietJack
Xét phương trình \({x^2}\; - \;2\left( {m - 2} \right)x\; - \;6m\; + \;3\; = \;0\).
Phương trình trên có \(\Delta \;' = \;{\left[ { - \left( {m - 2} \right)} \right]^2} - \;1 \cdot \left( { - 6m\; + \;3} \right)\)
\(\; = \;{m^2} - 4m + 4 + \;6m\; - \;3\)\(\; = \;{m^2} + 2m + 1\)\(\; = \;{\left( {m + 1} \right)^2} \ge 0\) với mọi \(m.\)
Để phương trình có hai nghiệm phân biệt thì \[\Delta > 0,\] tức là\(\;\;{\left( {m + 1} \right)^2} > 0,\) hay \({\left( {m + 1} \right)^2} \ne 0,\) suy ra \(m + 1 \ne 0\) nên \(m \ne - 1.\)
Vậy điều kiện để phương trình có hai nghiệm phân biệt là \[m \ne - 1\].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Thay \(x = 16\) (thỏa mãn) vào biểu thức \(A,\) ta được:
\[A = \frac{{\sqrt {16} + 3}}{{3 - \sqrt {16} }} = \frac{{4 + 3}}{{3 - 4}} = - 7.\]
Vậy \(A = - 7\) khi \(x = 16.\)
Lời giải
a) Tổng trị giá xuất khẩu hàng hóa của nước ta trong quý I của giai đoạn \(2020 - 2022\) là:
\(63,4 + 58,76 + 89,1 = 211,26\) (tỷ USD).
b) Trị giá xuất khẩu trong quý I/2021 chiếm số phần trăm so với tổng trị trị giá xuất khẩu hàng hóa của nước ta trong quý I của giai đoạn \(2020 - 2022\) là:
\(\frac{{58,76}}{{211,26}} \cdot 100\% \approx 27,8\% \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đề thi minh họa TS vào 10 năm học 2025 - 2026_Môn Toán_Tỉnh Đắk Lắk
123 bài tập Nón trụ cầu và hình khối có lời giải
50 bài tập Một số yếu tố xác suất có lời giải
Đề thi tham khảo môn Toán vào 10 tỉnh Quảng Bình năm học 2025-2026
Đề thi minh họa (Dự thảo) TS vào 10 năm học 2025 - 2026_Môn Toán_Tỉnh Đồng Nai
Đề thi minh họa TS vào 10 năm học 2025 - 2026_Môn Toán_TP Hà Nội
Đề thi thử TS vào 10 (Lần 2 - Tháng 2) năm học 2025 - 2026_Môn Toán_THCS Hoằng Thanh_Tỉnh Thanh Hóa
Đề thi tham khảo TS vào 10 năm học 2025 - 2026_Môn Toán_Tỉnh Bình Phước
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận