Câu hỏi:
11/03/2025 902Câu 3-5 (1,5 điểm)
Cho hai biểu thức và với .
Quảng cáo
Trả lời:
Thay \(x = 16\) (thỏa mãn) vào biểu thức \(A,\) ta được:
\[A = \frac{{\sqrt {16} + 3}}{{3 - \sqrt {16} }} = \frac{{4 + 3}}{{3 - 4}} = - 7.\]
Vậy \(A = - 7\) khi \(x = 16.\)
Câu hỏi cùng đoạn
Câu 2:
Lời giải của GV VietJack
Với \(x \ge 0;\,\,x \ne 9\), ta có:
\(B = \frac{{\sqrt x }}{{\sqrt x + 3}} + \frac{{2\sqrt x }}{{\sqrt x - 3}} - \frac{{3x + 9}}{{x - 9}}\)
\( = \frac{{\sqrt x \left( {\sqrt x - 3} \right)}}{{\left( {\sqrt x + 3} \right)\left( {\sqrt x - 3} \right)}} + \frac{{2\sqrt x \left( {\sqrt x + 3} \right)}}{{\left( {\sqrt x + 3} \right)\left( {\sqrt x - 3} \right)}} - \frac{{3x + 9}}{{\left( {\sqrt x + 3} \right)\left( {\sqrt x - 3} \right)}}\)
\( = \frac{{x - 3\sqrt x + 2x + 6\sqrt x - 3x - 9}}{{\left( {\sqrt x + 3} \right)\left( {\sqrt x - 3} \right)}}\)\( = \frac{{3\sqrt x - 9}}{{\left( {\sqrt x + 3} \right)\left( {\sqrt x - 3} \right)}}\)
\( = \frac{{3\left( {\sqrt x - 3} \right)}}{{\left( {\sqrt x + 3} \right)\left( {\sqrt x - 3} \right)}}\)\( = \frac{3}{{\sqrt x + 3}}.\)
Vậy với \(x \ge 0;\,\,x \ne 9\) thì \(B = \frac{3}{{\sqrt x + 3}}.\)
Câu 3:
Lời giải của GV VietJack
Với \(x \ge 0;\,\,x \ne 9\), ta có:
\[AB = \frac{{\sqrt x + 3}}{{3 - \sqrt x }} \cdot \frac{3}{{\sqrt x + 3}} = \frac{3}{{3 - \sqrt x }}.\]
Theo bài, \(AB \le 1\) nên \(\frac{3}{{3 - \sqrt x }} \le 1\)
Hay \(\frac{{ - 3}}{{\sqrt x - 3}} \le 1\)
\(1 + \frac{3}{{\sqrt x - 3}} \ge 0\)
\(\frac{{\sqrt x - 3 + 3}}{{\sqrt x - 3}} \ge 0\)
\(\frac{{\sqrt x }}{{\sqrt x - 3}} \ge 0.\,\,\,\left( * \right)\)
Trường hợp 1: Nếu \(x = 0,\) ta có \(\sqrt x = 0\) và \(\sqrt x - 3 = - 3 \ne 0\) nên \(\frac{{\sqrt x }}{{\sqrt x - 3}} = 0\) nên \(x = 0\) là một nghiệm của bất phương trình (*0.
Trường hợp 2: Nếu \(x > 0,\,\,x \ne 9\) thì \(\sqrt x > 0\) nên giải bất phương trình (*) ta có:
\(\sqrt x - 3 > 0\) hay \(\sqrt x > 3\) suy ra \(x > 9.\)
Kết hợp với điều kiện \(x \ge 0;\,\,x \ne 9\) ta có \(x > 9.\)
Vậy \(x = 0\) và \(x > 9\) thì \(A.B \le 1\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Tổng trị giá xuất khẩu hàng hóa của nước ta trong quý I của giai đoạn \(2020 - 2022\) là:
\(63,4 + 58,76 + 89,1 = 211,26\) (tỷ USD).
b) Trị giá xuất khẩu trong quý I/2021 chiếm số phần trăm so với tổng trị trị giá xuất khẩu hàng hóa của nước ta trong quý I của giai đoạn \(2020 - 2022\) là:
\(\frac{{58,76}}{{211,26}} \cdot 100\% \approx 27,8\% \).
Lời giải
Vì là tam giác đều cạnh nên và
Xét vuông tại có và vuông tại có
Suy ra
Vì là hình chữ nhật nên
Xét và có: và
Do đó (cạnh góc vuông – góc nhọn kề).
Suy ra (hai cạnh tương ứng).
Do và nên
Xét vuông tại có
Diện tích hình chữ nhật là:
Để diện tích hình chữ nhật lớn nhất thì ta tìm giá trị lớn nhất của biểu thức
Ta có
Với mọi ta có nên hay
Dấu “=” xảy ra khi và chỉ khi hay (thỏa mãn).
Vậy diện tích hình chữ nhật lớn nhất bằng khi
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đề thi minh họa TS vào 10 năm học 2025 - 2026_Môn Toán_Tỉnh Đắk Lắk
123 bài tập Nón trụ cầu và hình khối có lời giải
50 bài tập Một số yếu tố xác suất có lời giải
Đề thi tham khảo môn Toán vào 10 tỉnh Quảng Bình năm học 2025-2026
Đề thi minh họa (Dự thảo) TS vào 10 năm học 2025 - 2026_Môn Toán_Tỉnh Đồng Nai
Đề thi minh họa TS vào 10 năm học 2025 - 2026_Môn Toán_TP Hà Nội
Đề thi thử TS vào 10 (Lần 2 - Tháng 2) năm học 2025 - 2026_Môn Toán_THCS Hoằng Thanh_Tỉnh Thanh Hóa
Đề thi tham khảo TS vào 10 năm học 2025 - 2026_Môn Toán_Tỉnh Bình Phước
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận