Câu hỏi:
11/03/2025 901Câu 3-5 (1,5 điểm)
Cho hai biểu thức và với .
Quảng cáo
Trả lời:
Thay \(x = 16\) (thỏa mãn) vào biểu thức \(A,\) ta được:
\[A = \frac{{\sqrt {16} + 3}}{{3 - \sqrt {16} }} = \frac{{4 + 3}}{{3 - 4}} = - 7.\]
Vậy \(A = - 7\) khi \(x = 16.\)
Câu hỏi cùng đoạn
Câu 2:
Lời giải của GV VietJack
Với \(x \ge 0;\,\,x \ne 9\), ta có:
\(B = \frac{{\sqrt x }}{{\sqrt x + 3}} + \frac{{2\sqrt x }}{{\sqrt x - 3}} - \frac{{3x + 9}}{{x - 9}}\)
\( = \frac{{\sqrt x \left( {\sqrt x - 3} \right)}}{{\left( {\sqrt x + 3} \right)\left( {\sqrt x - 3} \right)}} + \frac{{2\sqrt x \left( {\sqrt x + 3} \right)}}{{\left( {\sqrt x + 3} \right)\left( {\sqrt x - 3} \right)}} - \frac{{3x + 9}}{{\left( {\sqrt x + 3} \right)\left( {\sqrt x - 3} \right)}}\)
\( = \frac{{x - 3\sqrt x + 2x + 6\sqrt x - 3x - 9}}{{\left( {\sqrt x + 3} \right)\left( {\sqrt x - 3} \right)}}\)\( = \frac{{3\sqrt x - 9}}{{\left( {\sqrt x + 3} \right)\left( {\sqrt x - 3} \right)}}\)
\( = \frac{{3\left( {\sqrt x - 3} \right)}}{{\left( {\sqrt x + 3} \right)\left( {\sqrt x - 3} \right)}}\)\( = \frac{3}{{\sqrt x + 3}}.\)
Vậy với \(x \ge 0;\,\,x \ne 9\) thì \(B = \frac{3}{{\sqrt x + 3}}.\)
Câu 3:
Lời giải của GV VietJack
Với \(x \ge 0;\,\,x \ne 9\), ta có:
\[AB = \frac{{\sqrt x + 3}}{{3 - \sqrt x }} \cdot \frac{3}{{\sqrt x + 3}} = \frac{3}{{3 - \sqrt x }}.\]
Theo bài, \(AB \le 1\) nên \(\frac{3}{{3 - \sqrt x }} \le 1\)
Hay \(\frac{{ - 3}}{{\sqrt x - 3}} \le 1\)
\(1 + \frac{3}{{\sqrt x - 3}} \ge 0\)
\(\frac{{\sqrt x - 3 + 3}}{{\sqrt x - 3}} \ge 0\)
\(\frac{{\sqrt x }}{{\sqrt x - 3}} \ge 0.\,\,\,\left( * \right)\)
Trường hợp 1: Nếu \(x = 0,\) ta có \(\sqrt x = 0\) và \(\sqrt x - 3 = - 3 \ne 0\) nên \(\frac{{\sqrt x }}{{\sqrt x - 3}} = 0\) nên \(x = 0\) là một nghiệm của bất phương trình (*0.
Trường hợp 2: Nếu \(x > 0,\,\,x \ne 9\) thì \(\sqrt x > 0\) nên giải bất phương trình (*) ta có:
\(\sqrt x - 3 > 0\) hay \(\sqrt x > 3\) suy ra \(x > 9.\)
Kết hợp với điều kiện \(x \ge 0;\,\,x \ne 9\) ta có \(x > 9.\)
Vậy \(x = 0\) và \(x > 9\) thì \(A.B \le 1\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Tổng trị giá xuất khẩu hàng hóa của nước ta trong quý I của giai đoạn \(2020 - 2022\) là:
\(63,4 + 58,76 + 89,1 = 211,26\) (tỷ USD).
b) Trị giá xuất khẩu trong quý I/2021 chiếm số phần trăm so với tổng trị trị giá xuất khẩu hàng hóa của nước ta trong quý I của giai đoạn \(2020 - 2022\) là:
\(\frac{{58,76}}{{211,26}} \cdot 100\% \approx 27,8\% \).
Lời giải
Vì là tam giác đều cạnh nên và
Xét vuông tại có và vuông tại có
Suy ra
Vì là hình chữ nhật nên
Xét và có: và
Do đó (cạnh góc vuông – góc nhọn kề).
Suy ra (hai cạnh tương ứng).
Do và nên
Xét vuông tại có
Diện tích hình chữ nhật là:
Để diện tích hình chữ nhật lớn nhất thì ta tìm giá trị lớn nhất của biểu thức
Ta có
Với mọi ta có nên hay
Dấu “=” xảy ra khi và chỉ khi hay (thỏa mãn).
Vậy diện tích hình chữ nhật lớn nhất bằng khi
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đề thi tham khảo môn Toán vào 10 tỉnh Quảng Bình năm học 2025-2026
Ôn thi Cấp tốc 789+ vào 10 môn Toán (Đề 1)
Đề thi thử TS vào 10 (Tháng 4) năm học 2025 - 2026_Môn Toán_Phòng GD&ĐT Huyện Giao Thủy_Tỉnh Nam Định
Đề thi thử TS vào 10 Tháng 5 năm học 2025 - 2026_Môn Toán
Đề thi thử TS vào 10 (Tháng 4) năm học 2025 - 2026_Môn Toán_THPT Chu Văn An_Tỉnh Thái Nguyên
Đề thi thử TS vào 10 Tháng 5 năm học 2025 - 2026_Môn Toán
Đề thi thử TS vào 10 Tháng 6 năm học 2025 - 2026_Môn Toán
Đề thi thử TS vào 10 Tháng 6 năm học 2025 - 2026_Môn Toán
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận