Câu hỏi:
11/03/2025 1,511Câu 7-8
Quảng cáo
Trả lời:
a) Hàng rào có chiều dài là:
\[L = l + 2R = \frac{{\pi \cdot 50 \cdot 72}}{{180}} + 2 \cdot 50 \approx \frac{{3,14 \cdot 50 \cdot 72}}{{180}} + 100 = 162,8{\rm{\;(m)}}{\rm{.}}\]
Câu hỏi cùng đoạn
Câu 2:
Lời giải của GV VietJack
Diện tích công viên là: \[S = \frac{{\pi \cdot {{50}^2} \cdot 72}}{{360}} \approx \frac{{3,14 \cdot {{50}^2} \cdot 72}}{{360}} = 1570{\rm{\;(}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\]
Diện tích trồng cỏ trong công viên là: \[S' = 30\% S \approx 30\% \cdot 1570 = 471{\rm{\;(}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\]
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi khối lượng thóc thu hoạch được năm ngoái của đơn vị thứ nhất và thứ hai sản xuất được lần lượt là \[x,y\] (tấn thóc, \[0 < x,\,\,y < 600).\]
Do năm ngoái hai đơn vị thu hoạch được \[600\] tấn thóc nên ta có phương trình: \[x + y = 600.\,\,\left( 1 \right)\]
Năm nay, đơn vị thứ nhất làm vượt mức \(10{\rm{\% }}\) so với năm ngoái nên khối lượng thóc thu hoạch được là \(\left( {100\% + 10\% } \right)x = 110\% x = 1,1x\) (tấn thóc).
Năm nay, đơn vị thứ hai làm vượt mức \(20{\rm{\% }}\) so với năm ngoái nên khối lượng thóc thu hoạch được là \(\left( {100\% + 20\% } \right)y = 120\% y = 1,2y\) (tấn thóc).
Năm nay cả hai đơn vị thu hoạch được \[685\] tấn thóc nên ta có phương trình: \[1,1x + 1,2y = 685\] (2)
Từ (1) và (2) ta có hệ phương trình: \(\left\{ \begin{array}{l}x + y = 600\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\1,1x + 1,2y = 685\,\,\,\,\,\left( 2 \right)\end{array} \right.\)
Nhân hai vế của phương trình (1) với \[1,2\] ta được hệ phương trình mới \(\left\{ \begin{array}{l}1,2x + 1,2y = 720\,\,\,\,\left( 3 \right)\\1,1x + 1,2y = 685\,\,\,\,\,\left( 2 \right)\end{array} \right.\)
Trừ từng vế của phương trình (3) cho phương trình (2), ta được:
\(0,1x = 35\) suy ra \[x = 350\] (thỏa mãn).
Thay \(x = 350\) vào phương trình (1) ta được \(350 + y = 600,\) suy ra \[y = 250\] (thỏa mãn).
Vậy, năm ngoái, đơn vị thứ nhất thu hoạch được \[350\] tấn thóc; đơn vị thứ hai thu hoạch được \[250\] tấn thóc.
Lời giải
Thể tích của hình hộp chữ nhật là:
\(V = a \cdot a \cdot h = {a^2}h{\rm{\;(c}}{{\rm{m}}^3}{\rm{)}}{\rm{.}}\)
Theo bài, hình hộp chữ nhật có thể tích bằng \(27\,{\rm{c}}{{\rm{m}}^{\rm{3}}}\) nên ta có \({a^2}h = 27,\) suy ra \(h = \frac{{27}}{{{a^2}}}.\)Diện tích toàn phần của hình hộp là:
\({S_{tp}} = {S_{xq}} + 2{S_d} = 4ah + 2{a^2}\)
\( = 4a \cdot \frac{{27}}{{{a^2}}} + 2{a^2} = \frac{{108}}{a} + 2{a^2} = 2\left( {{a^2} + \frac{{27}}{a} + \frac{{27}}{a}} \right)\)
\( \ge 2 \cdot 3\sqrt[3]{{{a^2} \cdot \frac{{27}}{a} \cdot \frac{{27}}{a}}}\) (Bất đẳng thức Cauchy)
\( = 2 \cdot 3 \cdot 9 = 54.\)
Như vậy, \({S_{tp}} \ge 54\). Dấu “=” xảy ra khi và chỉ khi \({a^2} = \frac{{27}}{a}\) hay \(a = 3\) (thỏa mãn \(a > 0).\)
Khi đó, \(h = \frac{{27}}{{{a^2}}} = \frac{{27}}{{{3^2}}} = 3{\rm{\;(cm)}}{\rm{.}}\)
Vậy hình hộp có diện tích toàn phần nhỏ nhất là \(54{\rm{\;c}}{{\rm{m}}^3},\) khi cạnh đáy hình vuông là \(3{\rm{\;cm}}\) và chiều cao là \(3{\rm{\;cm}}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
123 bài tập Nón trụ cầu và hình khối có lời giải
Đề thi minh họa TS vào 10 năm học 2025 - 2026_Môn Toán_Tỉnh Đắk Lắk
50 bài tập Một số yếu tố xác suất có lời giải
Đề thi tham khảo môn Toán vào 10 tỉnh Quảng Bình năm học 2025-2026
Đề thi minh họa TS vào 10 năm học 2025 - 2026_Môn Toán_TP Hà Nội
Đề thi tham khảo TS vào 10 năm học 2025 - 2026_Môn Toán_TP Phú Thọ
54 bài tập Hàm số bậc hai và giải bài toán bằng cách lập phương trình có lời giải
Đề thi thử TS vào 10 (Lần 2 - Tháng 2) năm học 2025 - 2026_Môn Toán_THCS Hoằng Thanh_Tỉnh Thanh Hóa