Câu hỏi:
12/03/2025 625
Rút gọn biểu thức \(A = 1:\left( {\frac{{\sqrt 7 - \sqrt {21} }}{{1 - \sqrt 3 }} - \sqrt {11 + 4\sqrt 7 } } \right)\) kết quả để dưới dạng phân số tối giản \(\frac{a}{b}\) có mẫu số dương (với \(a,b\) là các số nguyên) khi đó tổng \(a + b\) bằng
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: C
Ta có \(A = 1:\left( {\frac{{\sqrt 7 - \sqrt {21} }}{{1 - \sqrt 3 }} - \sqrt {11 + 4\sqrt 7 } } \right) = 1:\left[ {\frac{{\sqrt 7 \left( {1 - \sqrt 3 } \right)}}{{1 - \sqrt 3 }} - \sqrt {7 + 2 \cdot \sqrt 7 \cdot 2 + 4} } \right]\)
\( = 1:\left[ {\sqrt 7 - \sqrt {{{\left( {\sqrt 7 + 2} \right)}^2}} } \right] = 1:\left[ {\sqrt 7 - \left| {\sqrt 7 + 2} \right|} \right] = 1:\left[ {\sqrt 7 - \left( {\sqrt 7 + 2} \right)} \right]\)
\( = 1:\left[ {\sqrt 7 - \sqrt 7 - 2} \right] = 1:\left( { - 2} \right) = \frac{{ - 1}}{2}.\)
Khi đó ta có \(a = - 1,\,\,b = 2\) nên \(a + b = - 1 + 2 = 1.\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Với \(a > 0,\,\,a \ne 1,\) ta có:
\(A = \left( {\frac{{\sqrt a }}{{\sqrt a - 1}} + \frac{1}{{\sqrt a - a}}} \right):\left( {\frac{1}{{\sqrt a + 1}} + \frac{2}{{a - 1}}} \right)\)
\[ = \left[ {\frac{{\sqrt a }}{{\sqrt a - 1}} - \frac{1}{{\sqrt a \left( {\sqrt a - 1} \right)}}} \right]:\left[ {\frac{1}{{\sqrt a + 1}} + \frac{2}{{\left( {\sqrt a + 1} \right)\left( {\sqrt a - 1} \right)}}} \right]\]
\( = \left[ {\frac{{\sqrt a \cdot \sqrt a }}{{\sqrt a \left( {\sqrt a - 1} \right)}} - \frac{1}{{\sqrt a \left( {\sqrt a - 1} \right)}}} \right]:\left[ {\frac{{\sqrt a - 1}}{{\left( {\sqrt a + 1} \right)\left( {\sqrt a - 1} \right)}} + \frac{2}{{\left( {\sqrt a + 1} \right)\left( {\sqrt a - 1} \right)}}} \right]\)
\( = \frac{{a - 1}}{{\sqrt a \left( {\sqrt a - 1} \right)}}:\frac{{\sqrt a - 1 + 2}}{{\left( {\sqrt a + 1} \right)\left( {\sqrt a - 1} \right)}}\)
\( = \frac{{a - 1}}{{\sqrt a \left( {\sqrt a - 1} \right)}} \cdot \frac{{\left( {\sqrt a + 1} \right)\left( {\sqrt a - 1} \right)}}{{\sqrt a + 1}}\)
\( = \frac{{a - 1}}{{\sqrt a }}.\)
Vậy với \(a > 0,\,\,a \ne 1\) thì \(A = \frac{{a - 1}}{{\sqrt a }}.\)
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Ta có: \(LM = LN + NM = 8 + 4 = 12{\rm{\;(cm)}}{\rm{.}}\)
Diện tích nửa hình tròn đường kính \(LN\) là: \({S_1} = \frac{1}{2} \cdot \pi \cdot {\left( {\frac{8}{2}} \right)^2} = 8\pi {\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\)
Diện tích nửa hình tròn đường kính \(LM\) là: \({S_2} = \frac{1}{2} \cdot \pi \cdot {\left( {\frac{{12}}{2}} \right)^2} = 18\pi {\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\)
Diện tích nửa hình tròn đường kính \(NM\) là: \({S_3} = \frac{1}{2} \cdot \pi \cdot {\left( {\frac{4}{2}} \right)^2} = 2\pi {\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\)
Diện tích phần kẻ sọc ở hình đã cho là: \(S = {S_2} - {S_1} + {S_3} = 18\pi - 8\pi + 2\pi = 12\pi {\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.