Câu hỏi:

12/03/2025 464

Rút gọn biểu thức \(A = 1:\left( {\frac{{\sqrt 7 - \sqrt {21} }}{{1 - \sqrt 3 }} - \sqrt {11 + 4\sqrt 7 } } \right)\) kết quả để dưới dạng phân số tối giản \(\frac{a}{b}\) có mẫu số dương (với \(a,b\) là các số nguyên) khi đó tổng \(a + b\) bằng          

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: C

Ta có \(A = 1:\left( {\frac{{\sqrt 7 - \sqrt {21} }}{{1 - \sqrt 3 }} - \sqrt {11 + 4\sqrt 7 } } \right) = 1:\left[ {\frac{{\sqrt 7 \left( {1 - \sqrt 3 } \right)}}{{1 - \sqrt 3 }} - \sqrt {7 + 2 \cdot \sqrt 7 \cdot 2 + 4} } \right]\)

\( = 1:\left[ {\sqrt 7 - \sqrt {{{\left( {\sqrt 7 + 2} \right)}^2}} } \right] = 1:\left[ {\sqrt 7 - \left| {\sqrt 7 + 2} \right|} \right] = 1:\left[ {\sqrt 7 - \left( {\sqrt 7 + 2} \right)} \right]\)

\( = 1:\left[ {\sqrt 7 - \sqrt 7 - 2} \right] = 1:\left( { - 2} \right) = \frac{{ - 1}}{2}.\)

Khi đó ta có \(a = - 1,\,\,b = 2\) nên \(a + b = - 1 + 2 = 1.\)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

1) Rút gọn biểu thức \(A = \left( {\frac{{\sqrt a }}{{\sqrt a - 1}} + \frac{1}{{\sqrt a - a}}} \right):\left( {\frac{1}{{\sqrt a + 1}} + \frac{2}{{a - 1}}} \right)\) với \(a > 0,\,\,a \ne 1.\)

Xem đáp án » 12/03/2025 5,020

Câu 2:

Tính diện tích phần kẻ sọc ở hình sau, giới hạn bởi nửa đường tròn đường kính \(LM\) và hai nửa đường tròn có đường kính tương ứng là \(LN = 8\,{\rm{cm}}\) \(NM = 4\,{\rm{cm}}{\rm{.}}\)

Tính diện tích phần kẻ sọc ở hình sau (ảnh 1)

Xem đáp án » 12/03/2025 1,346

Câu 3:

(1,0 điểm) Giải bài toán bằng cách lập phương trình hoặc hệ phương trình.

Trong đợt thi đấu giải bóng bàn dành cho lứa tuổi học sinh THCS của năm học 2024 – 2025. Một đội tuyển học sinh của một cụm trường THCS tham gia cuộc thi đấu bóng bàn gồm cả Nam và Nữ. Trong lớp có \(\frac{1}{2}\) số học sinh nam và \(\frac{5}{8}\) số học sinh nữ thi đấu tạo thành cặp (một nam kết hợp với một nữ). Số học sinh còn lại không thi đấu là 16 học sinh làm cổ động viên. Hỏi đội tuyển có tất cả bao nhiêu học sinh?

Xem đáp án » 11/03/2025 644

Câu 4:

1) Chứng minh rằng các điểm \(M,\,\,N,\,\,D,\,\,E\) cùng thuộc một đường tròn.

Xem đáp án » 12/03/2025 547

Câu 5:

Đồ thị hàm số \(y = - \frac{1}{{\sqrt 3 }}{x^2}\) đi qua điểm nào dưới đây?          

Xem đáp án » 12/03/2025 367

Câu 6:

Hệ phương trình \(\left\{ \begin{array}{l}2x + ay = 0\\bx - y = - 1\end{array} \right.\) có nghiệm \(\left( {x;y} \right) = \left( { - 1;2} \right)\) thì biểu thức \({a^2} + {b^2}\) bằng          

Xem đáp án » 12/03/2025 325
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay