Câu hỏi:
11/03/2025 484
Hai con thuyền \(P\) và \(Q\) cách nhau \(300\) m và thẳng hàng với chân \(B\) của tháp hải đăng ở trên bờ biển. Từ \(P\) và \(Q\) người ta nhìn thấy tháp hải đăng dưới các góc \(\widehat {BPQ} = 14^\circ ,\,\,\widehat {BQA} = 42^\circ .\) Đặt \(h = AB\) là chiều cao của tháp hải đăng.

Khi đó chiều cao của tháp hải đăng (làm tròn đến hàng đơn vị) là
Hai con thuyền \(P\) và \(Q\) cách nhau \(300\) m và thẳng hàng với chân \(B\) của tháp hải đăng ở trên bờ biển. Từ \(P\) và \(Q\) người ta nhìn thấy tháp hải đăng dưới các góc \(\widehat {BPQ} = 14^\circ ,\,\,\widehat {BQA} = 42^\circ .\) Đặt \(h = AB\) là chiều cao của tháp hải đăng.
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: D
Xét \(\Delta ABQ\) vuông tại \(B,\) ta có: \(AB = BQ \cdot \tan \widehat {BQA}\) suy ra \(BQ = \frac{{AB}}{{\tan \widehat {BQA}}} = \frac{{AB}}{{\tan 42^\circ }}{\rm{\;(m)}}{\rm{.}}\)
Xét \(\Delta ABP\) vuông tại \(B,\) ta có: \(AB = BP \cdot \tan \widehat {BPA}\) suy ra \(BP = \frac{{AB}}{{\tan \widehat {BPA}}} = \frac{{AB}}{{\tan 14^\circ }}{\rm{\;(m)}}{\rm{.}}\)
Ta có: \(PQ = BP - BQ\) nên \(300 = \frac{{AB}}{{\tan 14^\circ }} - \frac{{AB}}{{\tan 42^\circ }}\)
\(300 = AB\left( {\frac{1}{{\tan 14^\circ }} - \frac{1}{{\tan 42^\circ }}} \right)\)
\(AB = \frac{{300}}{{\frac{1}{{\tan 14^\circ }} - \frac{1}{{\tan 42^\circ }}}} \approx 103{\rm{\;(m)}}{\rm{.}}\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Với \(a > 0,\,\,a \ne 1,\) ta có:
\(A = \left( {\frac{{\sqrt a }}{{\sqrt a - 1}} + \frac{1}{{\sqrt a - a}}} \right):\left( {\frac{1}{{\sqrt a + 1}} + \frac{2}{{a - 1}}} \right)\)
\[ = \left[ {\frac{{\sqrt a }}{{\sqrt a - 1}} - \frac{1}{{\sqrt a \left( {\sqrt a - 1} \right)}}} \right]:\left[ {\frac{1}{{\sqrt a + 1}} + \frac{2}{{\left( {\sqrt a + 1} \right)\left( {\sqrt a - 1} \right)}}} \right]\]
\( = \left[ {\frac{{\sqrt a \cdot \sqrt a }}{{\sqrt a \left( {\sqrt a - 1} \right)}} - \frac{1}{{\sqrt a \left( {\sqrt a - 1} \right)}}} \right]:\left[ {\frac{{\sqrt a - 1}}{{\left( {\sqrt a + 1} \right)\left( {\sqrt a - 1} \right)}} + \frac{2}{{\left( {\sqrt a + 1} \right)\left( {\sqrt a - 1} \right)}}} \right]\)
\( = \frac{{a - 1}}{{\sqrt a \left( {\sqrt a - 1} \right)}}:\frac{{\sqrt a - 1 + 2}}{{\left( {\sqrt a + 1} \right)\left( {\sqrt a - 1} \right)}}\)
\( = \frac{{a - 1}}{{\sqrt a \left( {\sqrt a - 1} \right)}} \cdot \frac{{\left( {\sqrt a + 1} \right)\left( {\sqrt a - 1} \right)}}{{\sqrt a + 1}}\)
\( = \frac{{a - 1}}{{\sqrt a }}.\)
Vậy với \(a > 0,\,\,a \ne 1\) thì \(A = \frac{{a - 1}}{{\sqrt a }}.\)
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Ta có: \(LM = LN + NM = 8 + 4 = 12{\rm{\;(cm)}}{\rm{.}}\)
Diện tích nửa hình tròn đường kính \(LN\) là: \({S_1} = \frac{1}{2} \cdot \pi \cdot {\left( {\frac{8}{2}} \right)^2} = 8\pi {\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\)
Diện tích nửa hình tròn đường kính \(LM\) là: \({S_2} = \frac{1}{2} \cdot \pi \cdot {\left( {\frac{{12}}{2}} \right)^2} = 18\pi {\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\)
Diện tích nửa hình tròn đường kính \(NM\) là: \({S_3} = \frac{1}{2} \cdot \pi \cdot {\left( {\frac{4}{2}} \right)^2} = 2\pi {\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\)
Diện tích phần kẻ sọc ở hình đã cho là: \(S = {S_2} - {S_1} + {S_3} = 18\pi - 8\pi + 2\pi = 12\pi {\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.