Câu hỏi:

11/03/2025 402

Hai con thuyền \(P\)\(Q\) cách nhau \(300\) m và thẳng hàng với chân \(B\) của tháp hải đăng ở trên bờ biển. Từ \(P\)\(Q\) người ta nhìn thấy tháp hải đăng dưới các góc \(\widehat {BPQ} = 14^\circ ,\,\,\widehat {BQA} = 42^\circ .\) Đặt \(h = AB\) là chiều cao của tháp hải đăng.

 Khi đó chiều cao của tháp hải đăng (làm tròn đến hàng đơn vị) là (ảnh 1)

Khi đó chiều cao của tháp hải đăng (làm tròn đến hàng đơn vị) là          

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: D

Xét \(\Delta ABQ\) vuông tại \(B,\) ta có: \(AB = BQ \cdot \tan \widehat {BQA}\) suy ra \(BQ = \frac{{AB}}{{\tan \widehat {BQA}}} = \frac{{AB}}{{\tan 42^\circ }}{\rm{\;(m)}}{\rm{.}}\)

Xét \(\Delta ABP\) vuông tại \(B,\) ta có: \(AB = BP \cdot \tan \widehat {BPA}\) suy ra \(BP = \frac{{AB}}{{\tan \widehat {BPA}}} = \frac{{AB}}{{\tan 14^\circ }}{\rm{\;(m)}}{\rm{.}}\)

Ta có: \(PQ = BP - BQ\) nên \(300 = \frac{{AB}}{{\tan 14^\circ }} - \frac{{AB}}{{\tan 42^\circ }}\)

\(300 = AB\left( {\frac{1}{{\tan 14^\circ }} - \frac{1}{{\tan 42^\circ }}} \right)\)

\(AB = \frac{{300}}{{\frac{1}{{\tan 14^\circ }} - \frac{1}{{\tan 42^\circ }}}} \approx 103{\rm{\;(m)}}{\rm{.}}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Với \(a > 0,\,\,a \ne 1,\) ta có:

\(A = \left( {\frac{{\sqrt a }}{{\sqrt a - 1}} + \frac{1}{{\sqrt a - a}}} \right):\left( {\frac{1}{{\sqrt a + 1}} + \frac{2}{{a - 1}}} \right)\)

 \[ = \left[ {\frac{{\sqrt a }}{{\sqrt a - 1}} - \frac{1}{{\sqrt a \left( {\sqrt a - 1} \right)}}} \right]:\left[ {\frac{1}{{\sqrt a + 1}} + \frac{2}{{\left( {\sqrt a + 1} \right)\left( {\sqrt a - 1} \right)}}} \right]\]

 \( = \left[ {\frac{{\sqrt a \cdot \sqrt a }}{{\sqrt a \left( {\sqrt a - 1} \right)}} - \frac{1}{{\sqrt a \left( {\sqrt a - 1} \right)}}} \right]:\left[ {\frac{{\sqrt a - 1}}{{\left( {\sqrt a + 1} \right)\left( {\sqrt a - 1} \right)}} + \frac{2}{{\left( {\sqrt a + 1} \right)\left( {\sqrt a - 1} \right)}}} \right]\)

 \( = \frac{{a - 1}}{{\sqrt a \left( {\sqrt a - 1} \right)}}:\frac{{\sqrt a - 1 + 2}}{{\left( {\sqrt a + 1} \right)\left( {\sqrt a - 1} \right)}}\)

 \( = \frac{{a - 1}}{{\sqrt a \left( {\sqrt a - 1} \right)}} \cdot \frac{{\left( {\sqrt a + 1} \right)\left( {\sqrt a - 1} \right)}}{{\sqrt a + 1}}\)

 \( = \frac{{a - 1}}{{\sqrt a }}.\)

Vậy với \(a > 0,\,\,a \ne 1\) thì \(A = \frac{{a - 1}}{{\sqrt a }}.\)

Câu 2

Tính diện tích phần kẻ sọc ở hình sau, giới hạn bởi nửa đường tròn đường kính \(LM\) và hai nửa đường tròn có đường kính tương ứng là \(LN = 8\,{\rm{cm}}\) \(NM = 4\,{\rm{cm}}{\rm{.}}\)

Tính diện tích phần kẻ sọc ở hình sau (ảnh 1)

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Ta có: \(LM = LN + NM = 8 + 4 = 12{\rm{\;(cm)}}{\rm{.}}\)

Diện tích nửa hình tròn đường kính \(LN\) là: \({S_1} = \frac{1}{2} \cdot \pi \cdot {\left( {\frac{8}{2}} \right)^2} = 8\pi {\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\)

Diện tích nửa hình tròn đường kính \(LM\) là: \({S_2} = \frac{1}{2} \cdot \pi \cdot {\left( {\frac{{12}}{2}} \right)^2} = 18\pi {\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\)

Diện tích nửa hình tròn đường kính \(NM\) là: \({S_3} = \frac{1}{2} \cdot \pi \cdot {\left( {\frac{4}{2}} \right)^2} = 2\pi {\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\)

Diện tích phần kẻ sọc ở hình đã cho là: \(S = {S_2} - {S_1} + {S_3} = 18\pi - 8\pi + 2\pi = 12\pi {\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Căn bậc hai số học của \(100\) bằng         

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Đồ thị hàm số \(y = - \frac{1}{{\sqrt 3 }}{x^2}\) đi qua điểm nào dưới đây?          

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay