Câu hỏi:
12/03/2025 158PHẦN II. TỰ LUẬN (7,0 điểm)
Câu 13-15. (1,0 điểm)
1) Giải hệ phương trình \(\left\{ \begin{array}{l}2x - y = 1\,\\x + y = 4\,\end{array} \right. \cdot \)
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).
Quảng cáo
Trả lời:
Hệ phương trình \(\left\{ \begin{array}{l}2x - y = 1\,\\x + y = 4\,\end{array} \right.\)
Cộng từng vế của hai phương trình ta được \(3x = 5\), suy ra \(x = \frac{5}{3}\).
Thay \(x = \frac{5}{3}\) vào phương trình thứ hai ta được \(\frac{5}{3} + y = 4\), suy ra \(y = 4 - \frac{5}{3} = \frac{7}{3}\).
Vậy hệ phương trình đã cho có nghiệm là \(\left( {x;y} \right) = \left( {\frac{5}{3};\frac{7}{3}} \right)\).
Câu hỏi cùng đoạn
Câu 2:
2) Tính giá trị biểu thức \(A = \sqrt {{{\left( {\sqrt 3 - 1} \right)}^2}} + \sqrt {12} .\)
Lời giải của GV VietJack
Ta có \(A = \sqrt {{{\left( {\sqrt 3 - 1} \right)}^2}} + \sqrt {12} = \left| {\sqrt 3 - 1} \right| + \sqrt {4 \cdot 3} \)
\( = \sqrt 3 - 1 + 2\sqrt 3 \)\( = 3\sqrt 3 - 1.\)
Câu 3:
3) Rút gọn biểu thức \[B = \left( {\frac{{\sqrt x }}{{\sqrt x + 2}} + \frac{2}{{\sqrt x - 2}}} \right):\frac{{x + 4}}{{\sqrt x + 2}}\], với \(x \ge 0\,,\,\,x \ne \pm 4.\)
Lời giải của GV VietJack
Với \(x \ge 0\,,\,\,x \ne \pm 4\), ta có:
\[B = \left( {\frac{{\sqrt x }}{{\sqrt x + 2}} + \frac{2}{{\sqrt x - 2}}} \right):\frac{{x + 4}}{{\sqrt x + 2}}\]
\( = \left[ {\frac{{\sqrt x \left( {\sqrt x - 2} \right)}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}} + \frac{{2\left( {\sqrt x + 2} \right)}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}}} \right]:\frac{{x + 4}}{{\sqrt x + 2}}\)
\( = \frac{{x - 2\sqrt x + 2\sqrt x + 4}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}}:\frac{{x + 4}}{{\sqrt x + 2}}\)
\( = \frac{{x + 4}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}}\,\, \cdot \,\,\frac{{\sqrt x + 2}}{{x + 4}}\)\( = \frac{1}{{\sqrt x - 2}}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
1) a) Tìm \(a\) để đồ thị hàm số \(y = a{x^2}\) đi qua điểm \(M\left( {\sqrt 2 \,;{\rm{ }}2} \right).\)
b) Cho phương trình \[{x^2}\, - \,\left( {2m\, + \,1} \right)x\, + \,m\, = \,0\], \[m\] là tham số. Tìm các giá trị của \[m\] để phương trình có hai nghiệm \[{x_1}\,,\,{x_2}\] thoả mãn điều kiện \[\left( {{x_1} - 1} \right)\left( {{x_2} - 1} \right) \ge 19.\]
Câu 3:
Câu 5:
Câu 6:
PHẦN I. TRẮC NGHIỆM (3,0 điểm)
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 01
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
Bộ 5 đề thi giữa kì 2 Toán 9 Kết nối tri thức có đáp án - Đề 01
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
Bộ 5 đề thi giữa kì 2 Toán 9 Kết nối tri thức có đáp án - Đề 03
Bộ 5 đề thi giữa kì 2 Toán 9 Kết nối tri thức có đáp án - Đề 02
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận