Câu hỏi:

12/03/2025 519

(1,0 điểm) Tìm \[m\] để phương trình: \({x^2} - 5x + m = 0\) có 2 nghiệm phân biệt \({x_1};\,\,{x_2}\) thỏa mãn điều kiện: \({x_1} + {x_2} - 101{x_1}{x_2} = 2\,\,025.\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét phương trình \({x^2} - 5x + m = 0.\)

Phương trình trên có \(\Delta = {\left( { - 5} \right)^2} - 4 \cdot 1 \cdot m = 25 - 4m.\)

Để phương trình đã cho có hai nghiệm phân biệt thì \(\Delta > 0,\) tức là \(25 - 4m > 0,\) suy ra \(m < \frac{{25}}{4}.\)

Theo định lí Viète, ta có: \({x_1} + {x_2} = 5;\,\,{x_1}{x_2} = m.\)

Ta có: \({x_1} + {x_2} - 101{x_1}{x_2} = 2\,\,025\)

\(5 - 101 \cdot m = 2\,\,025\)

\(101m = - 2\,\,020\)

\(m = - 20\) (thỏa mãn điều kiện \(m < \frac{{25}}{4}).\)

Vậy \(m = - 20.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Đường kính của đường tròn đi qua bốn đỉnh của hình chữ nhật \(MNPQ\) có chiều dài 12 cm, chiều rộng 5 cm là          

Lời giải

Đường kính của đường tròn đi qua bốn đỉnh của hình chữ nhật \(MNPQ\) có chiều dài 12 cm, chiều rộng 5 cm là 	 (ảnh 1)

Đáp án đúng là: A

Đường tròn đi qua bốn đỉnh của hình chữ nhật \(MNPQ\) là đường tròn đường kính \(MP.\)

Xét \(\Delta MPQ\) vuông tại \(Q,\) theo định lí Pythagore, ta có:

\(M{P^2} = M{Q^2} + P{Q^2} = {5^2} + {12^2} = 169.\) Do đó \(MP = 13{\rm{\;cm}}.\)

Vậy đường kính của đường tròn đi qua bốn đỉnh của hình chữ nhật \(MNPQ\)\(13{\rm{\;cm}}.\)

Lời giải

Vận tốc của người đó chạy ngược chiều gió là: \(v - 6\) (km/h) \(\left( {v > 6} \right).\)

Thời gian người đó chạy hết quãng đường \(s\) (km) là: \(\frac{s}{{v - 6}}\) (giờ).

 Khi đó, \(E\left( v \right) = c \cdot {v^3} \cdot \frac{s}{{v - 6}} = \frac{{cs{v^3}}}{{v - 6}}\) (Jun).

Để năng lượng tiêu hao ít nhất thì \(E\left( v \right) = \frac{{cs{v^3}}}{{v - 6}}\) nhỏ nhất.

Ta có: \[E\left( v \right) = \frac{{cs{v^3}}}{{v - 6}} = cs \cdot \left( {{v^2} + 6v + 36 + \frac{{216}}{{v - 6}}} \right) = cs \cdot \left[ {{{\left( {v - 6} \right)}^2} + 18\left( {v - 6} \right) + 108 + \frac{{216}}{{v - 6}}} \right]\]

 \[ = cs \cdot \left[ {{{\left( {v - 6} \right)}^2} + \frac{{27}}{{v - 6}} + \frac{{27}}{{v - 6}} + 18\left( {v - 6} \right) + \frac{{162}}{{v - 6}} + 108} \right]\]

 \[ \ge cs \cdot \left[ {3\sqrt[3]{{{{\left( {v - 6} \right)}^2} \cdot \frac{{27}}{{v - 6}} \cdot \frac{{27}}{{v - 6}}}} + 2\sqrt {18\left( {v - 6} \right) \cdot \frac{{162}}{{v - 6}}} + 108} \right]\] (Bất đẳng thức Cauchy)

 \[ = cs \cdot \left[ {3 \cdot 9 + 2 \cdot 54 + 108} \right] = 243cs.\]

Dấu “=” xảy ra khi và chỉ khi \[\left\{ \begin{array}{l}{\left( {v - 6} \right)^2} = \frac{{27}}{{v - 6}}\\18\left( {v - 6} \right) = \frac{{162}}{{v - 6}}\end{array} \right.,\] tức là \(v = 9\) (thỏa mãn).

Vậy người đó cần chạy với vận tốc 9 km/h để năng lượng tiêu hao trong quá trình chạy là ít nhất bằng \(243cs\) Jun.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Đồ thị hàm số nào sau đây đi qua điểm có tọa độ \(\left( {3;3} \right)\)?          

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Với \(x \ge 0\), biểu thức \(2x\sqrt x \) bằng biểu thức nào dưới đây?          

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP