Câu hỏi:

19/03/2025 1,542 Lưu

Một tác giả muốn xuất bản một cuốn sách Toán học. Biết phí xuất bản là 7 triệu đồng và giá tiền in mỗi cuốn sách là 50 000 đồng. Gọi t (t ≥ 1) là số cuốn sách sẽ in và f(t) (đơn vị nghìn đồng) là chi phí trung bình của mỗi cuốn sách. Tìm phương trình đường tiệm cận ngang của đồ thị hàm số f(t).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải:

Tổng số tiền cần bỏ ra để in t cuốn sách là 7000 + 50t (nghìn đồng).

Chi phí trung bình của mỗi cuốn sách là \(f\left( t \right) = \frac{{7000 + 50t}}{t}\).

Ta có \(\mathop {\lim }\limits_{t \to + \infty } f\left( t \right) = \mathop {\lim }\limits_{t \to + \infty } \frac{{7000 + 50t}}{t} = 50\).

Vậy y = 50 là đường tiệm cận ngang của đồ thị hàm số f(t).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: D

Ta có \(\mathop {\lim }\limits_{t \to \infty } f\left( t \right) = \mathop {\lim }\limits_{t \to \infty } \frac{{26t + 10}}{{t + 5}} = 26\). Nên đồ thị hàm số f(t) có đường tiệm cận ngang là y = 26.

Lời giải

Đáp án đúng là: A

Do thể tích của bể là 1 m3 nên 0,5xy = 1 xy = 2 .

Diện tích toàn phần của bể là \(S\left( x \right) = xy + 2.0,5.x + 2.0,5.y = 2 + x + \frac{2}{x},\,\,\,\,\left( {x > 0} \right)\).

Ta có: \(\mathop {\lim }\limits_{x \to + \infty } \left( {S\left( x \right) - \left( {x + 2} \right)} \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{2}{x} = 0\).

Suy ra đồ thị hàm số S(x) có đường tiệm cận xiên là y = x + 2 a = 1; b = 2.

Vậy P = a2 + b2 = 5.