Câu hỏi:

19/03/2025 441

Số dân của một thị trấn sau t năm kể từ năm 1970 được ước tính bởi công thức \(f\left( t \right) = \frac{{26t + 10}}{{t + 5}}\); f(t) được tính bằng nghìn người. Xem f(t) là một hàm số xác định trên nửa khoảng [0; +∞). Đồ thị hàm số y = f(t) có đường tiệm cận ngang y = a. Giá trị của a là bao nhiêu?

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Ta có \(\mathop {\lim }\limits_{t \to \infty } f\left( t \right) = \mathop {\lim }\limits_{t \to \infty } \frac{{26t + 10}}{{t + 5}} = 26\). Nên đồ thị hàm số f(t) có đường tiệm cận ngang là y = 26.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Từ một tấm tôn hình chữ nhật có các kích thước là x (m), y (m) với x > 1, y > 1 và diện tích bằng 4 m2, người ta cắt bốn hình vuông bằng nhau ở bốn góc rồi gập thành một cái thùng dạng hình hộp chữ nhật không nắp (như hình vẽ) có chiều cao bằng 0,5 m. Thể tích của thùng là hàm số V(x) trên khoảng (1; +∞). Đồ thị hàm số \(y = \frac{1}{{V\left( x \right)}}\) có bao nhiêu đường tiệm cận đứng?

Từ một tấm tôn hình chữ nhật có các kích thước là x (m), y (m) với x > 1, y > 1 và diện tích bằng 4 m2, người ta cắt bốn hình vuông bằng nhau ở bốn góc rồi gập thành một cái thùng dạng hình hộp chữ nhật không nắp (như hình vẽ) có chiều cao bằng 0,5 m. Thể tích của thùng là hàm số V(x) trên khoảng (1; +∞). Đồ thị hàm số   y = 1 V ( x )   có bao nhiêu đường tiệm cận đứng? (ảnh 1)

Xem đáp án » 19/03/2025 211

Câu 2:

Người ta muốn làm một cái bể dạng hình hộp chữ nhật không nắp (như hình vẽ) có thể tích bằng 1 m3. Chiều cao của bể là 5 dm, các kích thước khác là x (m), y (m) với x > 0 và y > 0. Diện tích toàn phần của bể (không kể nắp) là hàm số S(x) trên khoảng (0; +∞). Đường tiệm cận xiên của đồ thị hàm số S(x) là đường thẳng y = ax + b. Tính giá trị của biểu thức P = a2 + b2 .

 Người ta muốn làm một cái bể dạng hình hộp chữ nhật không nắp (như hình vẽ) có thể tích bằng 1 m3. Chiều cao của bể là 5 dm, các kích thước khác là x (m), y (m) với x > 0 và y > 0. Diện tích (ảnh 1)

Xem đáp án » 19/03/2025 187

Câu 3:

Một nhà máy sản xuất linh kiện điện tử thống kê được rằng trung bình một tổ sản xuất với x người thì số sản phẩm sản xuất được trong một thời gian cố định được tính bằng công thức \(P\left( x \right) = \frac{{5000x}}{{4x + 25}}\). Xem y = P(x) là một hàm số xác định trên [0; +∞), khi đó tiệm cận ngang của đồ thị hàm số là:

Xem đáp án » 19/03/2025 140

Câu 4:

Chi phí (đơn vị: nghìn đồng) để sản xuất x sản phẩm của một công ty được xác định bởi hàm số F(x) = 60000 + 250x. Gọi F(x) là hàm số biểu thị chi phí trung bình (đơn vị: nghìn đồng) để sản xuất x sản phẩm (x ≥ 0), khi đó tiệm cận ngang của đồ thị hàm số bằng

Xem đáp án » 19/03/2025 119

Câu 5:

Một bể chứa 2 m3 nước tinh khiết. Người ta bơm vào bể đó nước muối có nồng độ không đổi với tốc độ 20 lít/phút. Biết rằng nồng độ muối trong bể sau t phút (tính bằng tỉ số của khối lượng muối trong bể và thể tích nước trong bể, đơn vị: gam/lít) là một hàm số f(t), thời gian t tính bằng phút. Biết rằng tiệm cận ngang của đồ thị hàm số f(t) là y = 19. Nồng độ muối trong bể sau khi bơm được 1 giờ là bao nhiêu?

Xem đáp án » 19/03/2025 118

Câu 6:

Số lượng sản phẩm của công ty bán được trong x tháng được tính bởi công thức \(S\left( x \right) = 300\left( {2 + \frac{4}{{x + 2}}} \right)\) với x ≥ 1. Xem y = S(x) là một hàm số xác định trên [1; +∞). Khi đó tiệm cận ngang của đồ thị hàm số là

Xem đáp án » 19/03/2025 110