Câu hỏi:
19/03/2025 119Chi phí (đơn vị: nghìn đồng) để sản xuất x sản phẩm của một công ty được xác định bởi hàm số F(x) = 60000 + 250x. Gọi F(x) là hàm số biểu thị chi phí trung bình (đơn vị: nghìn đồng) để sản xuất x sản phẩm (x ≥ 0), khi đó tiệm cận ngang của đồ thị hàm số bằng
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Đáp án đúng là: D
Chi phí trung bình để sản xuất x sản phẩm là \(F\left( x \right) = \frac{{60000 + 250x}}{x}\) (nghìn đồng).
Ta có \(\mathop {\lim }\limits_{x \to + \infty } F\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{60000 + 250x}}{x} = 250\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Số dân của một thị trấn sau t năm kể từ năm 1970 được ước tính bởi công thức \(f\left( t \right) = \frac{{26t + 10}}{{t + 5}}\); f(t) được tính bằng nghìn người. Xem f(t) là một hàm số xác định trên nửa khoảng [0; +∞). Đồ thị hàm số y = f(t) có đường tiệm cận ngang y = a. Giá trị của a là bao nhiêu?
Câu 2:
Từ một tấm tôn hình chữ nhật có các kích thước là x (m), y (m) với x > 1, y > 1 và diện tích bằng 4 m2, người ta cắt bốn hình vuông bằng nhau ở bốn góc rồi gập thành một cái thùng dạng hình hộp chữ nhật không nắp (như hình vẽ) có chiều cao bằng 0,5 m. Thể tích của thùng là hàm số V(x) trên khoảng (1; +∞). Đồ thị hàm số \(y = \frac{1}{{V\left( x \right)}}\) có bao nhiêu đường tiệm cận đứng?
Câu 3:
Người ta muốn làm một cái bể dạng hình hộp chữ nhật không nắp (như hình vẽ) có thể tích bằng 1 m3. Chiều cao của bể là 5 dm, các kích thước khác là x (m), y (m) với x > 0 và y > 0. Diện tích toàn phần của bể (không kể nắp) là hàm số S(x) trên khoảng (0; +∞). Đường tiệm cận xiên của đồ thị hàm số S(x) là đường thẳng y = ax + b. Tính giá trị của biểu thức P = a2 + b2 .
Câu 4:
Một nhà máy sản xuất linh kiện điện tử thống kê được rằng trung bình một tổ sản xuất với x người thì số sản phẩm sản xuất được trong một thời gian cố định được tính bằng công thức \(P\left( x \right) = \frac{{5000x}}{{4x + 25}}\). Xem y = P(x) là một hàm số xác định trên [0; +∞), khi đó tiệm cận ngang của đồ thị hàm số là:
Câu 5:
Một bể chứa 2 m3 nước tinh khiết. Người ta bơm vào bể đó nước muối có nồng độ không đổi với tốc độ 20 lít/phút. Biết rằng nồng độ muối trong bể sau t phút (tính bằng tỉ số của khối lượng muối trong bể và thể tích nước trong bể, đơn vị: gam/lít) là một hàm số f(t), thời gian t tính bằng phút. Biết rằng tiệm cận ngang của đồ thị hàm số f(t) là y = 19. Nồng độ muối trong bể sau khi bơm được 1 giờ là bao nhiêu?
Câu 6:
Số lượng sản phẩm của công ty bán được trong x tháng được tính bởi công thức \(S\left( x \right) = 300\left( {2 + \frac{4}{{x + 2}}} \right)\) với x ≥ 1. Xem y = S(x) là một hàm số xác định trên [1; +∞). Khi đó tiệm cận ngang của đồ thị hàm số là
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận