Câu hỏi:
19/03/2025 84Quảng cáo
Trả lời:
Hướng dẫn giải:
1) Tập xác định: ℝ\{1}.
2) Sự biến thiên
\(y' = \frac{{ - 3}}{{{{(x - 1)}^2}}} < 0\) với mọi x ≠ 1.
Hàm số nghịch biến trên mỗi khoảng (−∞; 1) và (1; +∞).
Hàm số không có cực trị.
Giới hạn tại vô cực, giới hạn vô cực và các đường tiệm cận:
\(\mathop {\lim }\limits_{x \to {1^ - }} y = - \infty ,\mathop {\lim }\limits_{x \to {1^ + }} y = + \infty \). Do đó, đường thẳng x = 1 là tiệm cận đứng của đổ thị hàm số.\(\mathop {\lim }\limits_{x \to + \infty } y = 2,\mathop {\lim }\limits_{x \to - \infty } y = 2\). Do đó, đường thẳng y = 2 là tiệm cận ngang của đồ thị hàm số.
Bảng biến thiên:
3) Đồ thị
- Giao điểm của đồ thị với trục tung: (0; −1).
- Giao điểm của đồ thị với trục hoành: \(\left( { - \frac{1}{2};0} \right)\).
Đồ thị hàm số đi qua các điểm \(( - 2;1),(2;5),\left( {\frac{5}{2};4} \right)\) và (4; 3).
Vậy đồ thị hàm số \(y = \frac{{2x + 1}}{{x - 1}}\) được cho ở Hình.
Quan sát đồ thị ở Hình, đồ thị đó nhận giao điểm I(1; 2) của hai đường tiệm cận của đồ thị làm tâm đối xứng và nhận hai đường phân giác của các góc tạo bởi hai đường tiệm cận đó làm trục đối xứng.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: A
Ta có tiệm cận đứng và tiệm cận xiên là đường thẳng x = 1, y = x + 3 do đó tâm đối xứng là I(1; 4).
Lời giải
Đáp án đúng là: C
Gọi M(x0; y0) là giao điểm của đồ thị hàm số với trục tung.
Ta có x0 = 0 y0 = 2.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.