Bác Hương bán hàng tạp hoá và có (đủ nhiều) các tờ tiền lẻ loại 2 nghìn đồng và 5 nghìn đồng. Bác cần trả lại cho một người mua hàng 25 nghìn đồng.
a) Gọi \(x\) là số tờ tiền loại 2 nghìn đồng, \(y\) là số tờ tiền loại 5 nghìn đồng mà bác Hương cần trả lại cho khách \((x,y \in \mathbb{N})\). Hãy lập phương trình bậc nhất hai ẩn đối với \(x\) và \(y\).
b) Hãy hỉ ra một nghiệm \((x;y)\) với \(x,y \in \mathbb{N}\) của phương trình lập ở câu a để tìm một phương án trả lại tiền thừa cho khách giúp bác Hương.
Quảng cáo
Trả lời:
a) Theo đề bài, ta có phương trình bậc nhất hai ẩn đối với \(x\) và \(y\): \(2x + 5y = 25\)(*)
b) Ta viết (*) dưới dạng \(y = - 0,4x + 5\). Cho \(x = 5\), ta được \(y = - 0,4 \cdot 5 + 5 = 3\).
Vậy bác Hương có thể trả lại 25 nghìn đồng tiền thừa cho người mua hàng bằng 5 tờ tiền 2 nghìn đồng và 3 tờ tiền 5 nghìn đồng.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(x\) (triệu đồng), \(y\) (triệu đồng) lần lượt là số tiền mà cửa hàng đã vay từ ngân hàng A, \({\rm{B}}(x > 0,y > 0)\).
Theo giả thiết, ta có phương trình: \(x + y = 600\).
Mặt khác, ta có phương trình: \(8{\rm{\% }} \cdot x + 9{\rm{\% }} \cdot y = 51,5\) hay \(8x + 9y = 5150\).
Ta có hệ phương trình: \(\left\{ {\begin{array}{*{20}{c}}{x + y = 600}\\{8x + 9y = 5150}\end{array}} \right.\)
Từ phương trình (1), ta có: \(y = 600 - x\).
Thế \(y = 600 - x\) vào phương trình (2), ta được: \(8x + 9\left( {600 - x} \right) = 5150\)
Giải phương trình (3):
\(\begin{array}{*{20}{c}}{8x + 9\left( {600 - x} \right)\; = 5150\,\,\,\,}\\{8x + 5400 - 9x\; = 5150\,\,\,\,\,}\\{ - x + 5400\; = 5150\,\,\,\,\,\,\,\,\,\,\,\,\,}\\{x\; = 250}\end{array}\)
Thay \(x = 250\) vào phương trình \(y = 600 - x\), ta có:
Do đó, phương trình đã cho có nghiệm duy nhất \(\left( {x;y} \right) = \left( {250;350} \right)\).
Vậy số tiền mà cửa hàng đã vay từ ngân hàng \({\rm{A}},{\rm{B}}\) lần lượt là 250 triệu đồng, 350 triệu đồng.
Lời giải
Gọi \(x\) (đồng) là giá niêm yết của một cái quạt điện, \(y\) (đồng) là giá niêm yết của một cái bàn ủi điện \(({\rm{x}} > 0,{\rm{y}} > 0)\).
Tổng số tiền theo giá niêm yết của hai sản phẩm là 900000 đồng, nên ta có phương trình: \(x + y = 900000\).(1)
Tổng số tiền của hai sản phẩm sau khi đã giảm giá là 780000 đồng, nên ta có phương trình: \(0,85x + 0,9y = 780000\)(2)
Từ (1) và \((2)\), ta có hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{x + y = 900000}\\{0,85x + 0,9y = 780000.}\end{array}} \right.\)
Giải hệ phương trình, ta được \(x = 600000,y = 300000\) (thoả mãn).
Vậy giá niêm yết của một cái quạt điện là 600000 đồng, giá niêm yết của một cái bàn ủi điện là 300000 đồng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.