Câu hỏi:

12/04/2025 91

Người ta chia một khu đất có dạng hình chữ nhật thành hai mảnh đất: mảnh đất thứ nhất có dạng hình vuông với độ dài cạnh \(x\left( {{\rm{\;m}}} \right)\); mảnh đất thứ hai có đạng hình chữ nhật với chiều dài \(x\left( {{\rm{\;m}}} \right)\) và chiều rộng \(y\left( {{\rm{\;m}}} \right)(x > y > 0)\) được minh hoạ ở Hinh 3. Chu vi của mảnh đất thứ nhất lớn hơn chu vi của mảnh đất thứ hai là \(6,8{\rm{\;m}}\). Trên một cạnh là chiều dài của khu đất, người ta đã xây một tường rào với chi phí 1130000 đồng theo giá 50000 đồng/mét.

a) Viết hệ hai phương trình bậc nhất hai ẩn \(x,y\) biểu thị mối quan hệ giữa các đại lượng.

b) Cặp số \(\left( {13;9,6} \right)\) có phải là nghiệm của hệ phương trình ở câu a hay không? Vì sao?

Viết hệ hai phương trình bậc nhất hai ẩn \(x,y\) biểu thị mối quan hệ giữa các đại lượng. (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Do chu vi của mảnh đất thứ nhất lớn hơn chu vi của mảnh đất thứ hai là \(6,8{\rm{\;m}}\) nên ta có phương trình: \(4x - 2\left( {x + y} \right) = 6,8\) hay \(x - y = 3,4\). Vậy hệ hai phương trình bậc nhất hai ẩn \(x,y\) biểu thị mối quan hệ giữa các đại lượng là:

\(\left\{ {\begin{array}{*{20}{l}}{x - y = 3,4}\\{x + y = 22,6}\end{array}} \right.\)

b) Học sinh tự làm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(x\) (triệu đồng), \(y\) (triệu đồng) lần lượt là số tiền mà cửa hàng đã vay từ ngân hàng A, \({\rm{B}}(x > 0,y > 0)\).

Theo giả thiết, ta có phương trình: \(x + y = 600\).

Mặt khác, ta có phương trình: \(8{\rm{\% }} \cdot x + 9{\rm{\% }} \cdot y = 51,5\) hay \(8x + 9y = 5150\).

Ta có hệ phương trình: \(\left\{ {\begin{array}{*{20}{c}}{x + y = 600}\\{8x + 9y = 5150}\end{array}} \right.\)

Từ phương trình (1), ta có: \(y = 600 - x\).

Thế \(y = 600 - x\) vào phương trình (2), ta được: \(8x + 9\left( {600 - x} \right) = 5150\)

Giải phương trình (3):

\(\begin{array}{*{20}{c}}{8x + 9\left( {600 - x} \right)\; = 5150\,\,\,\,}\\{8x + 5400 - 9x\; = 5150\,\,\,\,\,}\\{ - x + 5400\; = 5150\,\,\,\,\,\,\,\,\,\,\,\,\,}\\{x\; = 250}\end{array}\)

Thay \(x = 250\) vào phương trình \(y = 600 - x\), ta có:

 

Do đó, phương trình đã cho có nghiệm duy nhất \(\left( {x;y} \right) = \left( {250;350} \right)\).

Vậy số tiền mà cửa hàng đã vay từ ngân hàng \({\rm{A}},{\rm{B}}\) lần lượt là 250 triệu đồng, 350 triệu đồng.

Lời giải

Gọi \(v\) là vận tốc riêng của máy bay (tính bằng dặm/giờ) và \(w\) là vận tốc gió (tính bằng dặm/giờ). Khi đó, để vận tốc máy bay thắng vận tốc gió thì điều kiện của ẩn là \(v > w > 0\).

Khi máy bay đi từ Atlanta đến Paris (đi về phía đông), thời gian di chuyển là 8 giờ và khoảng cách là 4000 dặm, nên ta có phương trình\(v + w = \frac{{4000}}{8} = 500.\)

Khi máy bay đi từ Paris về Atlanta (đi về phía tây), thời gian di chuyển là 10 giờ và khoảng cách là 4000 dặm, nên ta có phương trình \(v - w = \frac{{4000}}{{10}} = 400.{\rm{ }}\)

Ta có hệ phương trình: \(\left\{ {\begin{array}{*{20}{l}}{v + w = 500}\\{v - w = 400.}\end{array}} \right.\)

Cộng từng vế hai phương trình của hệ ta được \(2v = 900\) hay \(v = 450\).

Thay giá trị này vào phương trình thứ nhất của hệ ta được \(w = 50\).

Ta có \(v = 450,w = 50\) thoả mãn điều kiện của ẩn.

Vậy vận tốc riêng của máy bay là 450 dặm/giờ và vận tốc gió là 50 dặm/giờ.