Câu hỏi:
12/04/2025 73
Phương trình cung và phương trình cầu của một loại thiết bị kĩ thuật số cá nhân mới là:
Phương trình cầu: \(p = 150 - 0,00001x\); Phương trình cung: \(p = 60 + 0,00002x\); trong đó \(p\) là giá mỗi đơn vị sản phẩm (tính bằng đô la) và \(x\) là số lượng đơn vị sản phẩm. Tìm điểm cân bằng của thị trường này, tức là điểm \((p;x)\) thoả mãn cả hai phương trình cung và cầu.
Phương trình cung và phương trình cầu của một loại thiết bị kĩ thuật số cá nhân mới là:
Phương trình cầu: \(p = 150 - 0,00001x\); Phương trình cung: \(p = 60 + 0,00002x\); trong đó \(p\) là giá mỗi đơn vị sản phẩm (tính bằng đô la) và \(x\) là số lượng đơn vị sản phẩm. Tìm điểm cân bằng của thị trường này, tức là điểm \((p;x)\) thoả mãn cả hai phương trình cung và cầu.
Quảng cáo
Trả lời:
Từ hai phương trình cung và cầu ta có hệ phương trình: \(\left\{ {\begin{array}{*{20}{l}}{p + 0,00001x = 150}\\{p - 0,00002x = 60.}\end{array}} \right.\)
Trừ từng vế hai phương trình của hệ ta được \(0,00003x = 90\) hay \(x = 3000000\).
Thay \(x = 3000000\) vào phương trình thứ nhất của hệ ta được \(p = 120\).
Vậy điểm cân bằng của thị trường thiết bị kĩ thuật số cá nhân mới là \((120;3000000)\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(x\) (triệu đồng), \(y\) (triệu đồng) lần lượt là số tiền mà cửa hàng đã vay từ ngân hàng A, \({\rm{B}}(x > 0,y > 0)\).
Theo giả thiết, ta có phương trình: \(x + y = 600\).
Mặt khác, ta có phương trình: \(8{\rm{\% }} \cdot x + 9{\rm{\% }} \cdot y = 51,5\) hay \(8x + 9y = 5150\).
Ta có hệ phương trình: \(\left\{ {\begin{array}{*{20}{c}}{x + y = 600}\\{8x + 9y = 5150}\end{array}} \right.\)
Từ phương trình (1), ta có: \(y = 600 - x\).
Thế \(y = 600 - x\) vào phương trình (2), ta được: \(8x + 9\left( {600 - x} \right) = 5150\)
Giải phương trình (3):
\(\begin{array}{*{20}{c}}{8x + 9\left( {600 - x} \right)\; = 5150\,\,\,\,}\\{8x + 5400 - 9x\; = 5150\,\,\,\,\,}\\{ - x + 5400\; = 5150\,\,\,\,\,\,\,\,\,\,\,\,\,}\\{x\; = 250}\end{array}\)
Thay \(x = 250\) vào phương trình \(y = 600 - x\), ta có:
Do đó, phương trình đã cho có nghiệm duy nhất \(\left( {x;y} \right) = \left( {250;350} \right)\).
Vậy số tiền mà cửa hàng đã vay từ ngân hàng \({\rm{A}},{\rm{B}}\) lần lượt là 250 triệu đồng, 350 triệu đồng.
Lời giải
Gọi \(v\) là vận tốc riêng của máy bay (tính bằng dặm/giờ) và \(w\) là vận tốc gió (tính bằng dặm/giờ). Khi đó, để vận tốc máy bay thắng vận tốc gió thì điều kiện của ẩn là \(v > w > 0\).
Khi máy bay đi từ Atlanta đến Paris (đi về phía đông), thời gian di chuyển là 8 giờ và khoảng cách là 4000 dặm, nên ta có phương trình\(v + w = \frac{{4000}}{8} = 500.\)
Khi máy bay đi từ Paris về Atlanta (đi về phía tây), thời gian di chuyển là 10 giờ và khoảng cách là 4000 dặm, nên ta có phương trình \(v - w = \frac{{4000}}{{10}} = 400.{\rm{ }}\)
Ta có hệ phương trình: \(\left\{ {\begin{array}{*{20}{l}}{v + w = 500}\\{v - w = 400.}\end{array}} \right.\)
Cộng từng vế hai phương trình của hệ ta được \(2v = 900\) hay \(v = 450\).
Thay giá trị này vào phương trình thứ nhất của hệ ta được \(w = 50\).
Ta có \(v = 450,w = 50\) thoả mãn điều kiện của ẩn.
Vậy vận tốc riêng của máy bay là 450 dặm/giờ và vận tốc gió là 50 dặm/giờ.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.