Câu hỏi:

12/04/2025 68

Thầy Nam dạy Toán đang thiết kế một bài kiểm tra trắc nghiệm gồm hai loại câu hỏi, câu hỏi đúng/sai và câu hỏi nhiều lựa chọn. Bài kiểm tra sẽ được tính trên thang điểm 100, trong đó mỗi câu hỏi đúng/sai có giá trị 2 điểm và mỗi câu hỏi nhiều lựa chọn có giá trị 4 điểm. Thầy Nam muốn số câu hỏi nhiều lựa chọn gấp đôi số câu hỏi đúng/sai.

a) Gọi số câu hỏi đúng/sai là \(x\), số câu hỏi nhiều lựa chọn là \(y\left( {x,y \in {\mathbb{N}^*}} \right)\). Viết hệ hai phương trình biểu thị số lượng của từng loại câu hỏi.

b) Giải hệ phương trình trong câu a để biết số lượng câu hỏi mỗi loại trong bài kiểm tra là bao nhiêu.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Do số câu hỏi nhiều lựa chọn gấp đôi số câu đúng/sai nên ta có phương trình \(y = 2x\) hay \(2x - y = 0\).

Mặt khác, tổng số điểm là 100, mỗi câu đúng/sai tính 2 điểm và mỗi câu nhiều lựa chọn tính 4 điểm nên ta có phương trình \(2x + 4y = 100\).

Vậy ta có hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{2x - y = 0}\\{2x + 4y = 100}\end{array}} \right.\)

b) Ta giải hệ phương trình nhận được ở câu a. Trừ từng vế hai phương trình của hệ ta được \(5y = 100\) hay \(y = 20\). Thay \(y = 20\) vào phương trình thứ nhất của hệ, ta có \(x = 10\).

Vậy trong bài kiểm tra đó, số câu hỏi đúng/sai là 10 câu và số câu hỏi nhiều lựa chọn là 20 câu.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(x\) (triệu đồng), \(y\) (triệu đồng) lần lượt là số tiền mà cửa hàng đã vay từ ngân hàng A, \({\rm{B}}(x > 0,y > 0)\).

Theo giả thiết, ta có phương trình: \(x + y = 600\).

Mặt khác, ta có phương trình: \(8{\rm{\% }} \cdot x + 9{\rm{\% }} \cdot y = 51,5\) hay \(8x + 9y = 5150\).

Ta có hệ phương trình: \(\left\{ {\begin{array}{*{20}{c}}{x + y = 600}\\{8x + 9y = 5150}\end{array}} \right.\)

Từ phương trình (1), ta có: \(y = 600 - x\).

Thế \(y = 600 - x\) vào phương trình (2), ta được: \(8x + 9\left( {600 - x} \right) = 5150\)

Giải phương trình (3):

\(\begin{array}{*{20}{c}}{8x + 9\left( {600 - x} \right)\; = 5150\,\,\,\,}\\{8x + 5400 - 9x\; = 5150\,\,\,\,\,}\\{ - x + 5400\; = 5150\,\,\,\,\,\,\,\,\,\,\,\,\,}\\{x\; = 250}\end{array}\)

Thay \(x = 250\) vào phương trình \(y = 600 - x\), ta có:

 

Do đó, phương trình đã cho có nghiệm duy nhất \(\left( {x;y} \right) = \left( {250;350} \right)\).

Vậy số tiền mà cửa hàng đã vay từ ngân hàng \({\rm{A}},{\rm{B}}\) lần lượt là 250 triệu đồng, 350 triệu đồng.

Lời giải

Gọi \(v\) là vận tốc riêng của máy bay (tính bằng dặm/giờ) và \(w\) là vận tốc gió (tính bằng dặm/giờ). Khi đó, để vận tốc máy bay thắng vận tốc gió thì điều kiện của ẩn là \(v > w > 0\).

Khi máy bay đi từ Atlanta đến Paris (đi về phía đông), thời gian di chuyển là 8 giờ và khoảng cách là 4000 dặm, nên ta có phương trình\(v + w = \frac{{4000}}{8} = 500.\)

Khi máy bay đi từ Paris về Atlanta (đi về phía tây), thời gian di chuyển là 10 giờ và khoảng cách là 4000 dặm, nên ta có phương trình \(v - w = \frac{{4000}}{{10}} = 400.{\rm{ }}\)

Ta có hệ phương trình: \(\left\{ {\begin{array}{*{20}{l}}{v + w = 500}\\{v - w = 400.}\end{array}} \right.\)

Cộng từng vế hai phương trình của hệ ta được \(2v = 900\) hay \(v = 450\).

Thay giá trị này vào phương trình thứ nhất của hệ ta được \(w = 50\).

Ta có \(v = 450,w = 50\) thoả mãn điều kiện của ẩn.

Vậy vận tốc riêng của máy bay là 450 dặm/giờ và vận tốc gió là 50 dặm/giờ.