Câu hỏi:
12/04/2025 66Một người mua 36 bông hoa hồng và hoa cẩm chướng hết tất cả 174000 đồng. Giá mỗi bông hoa hồng là 5500 đồng, giá mỗi bông hoa cẩm chướng là 4000 đồng. Hỏi người đó đã mua bao nhiêu bông hoa mỗi loại?
Quảng cáo
Trả lời:
Gọi \[x,{\rm{ }}y\]lần lượt là số bông hoa hồng và số bông hoa cẩm chướng người đó mua \(\left( {x \in {\mathbb{N}^*},y \in {\mathbb{N}^*}} \right)\).
Ta có hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{x + y = 36}\\{5500x + 4000y = 174000.}\end{array}} \right.\)
Giải hệ phương trình, ta được \(x = 20,y = 16\) (thoả mãn).
Vậy người đó đã mua 20 bông hoa hồng và 16 bông hoa cẩm chướng.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(x\) (triệu đồng), \(y\) (triệu đồng) lần lượt là số tiền mà cửa hàng đã vay từ ngân hàng A, \({\rm{B}}(x > 0,y > 0)\).
Theo giả thiết, ta có phương trình: \(x + y = 600\).
Mặt khác, ta có phương trình: \(8{\rm{\% }} \cdot x + 9{\rm{\% }} \cdot y = 51,5\) hay \(8x + 9y = 5150\).
Ta có hệ phương trình: \(\left\{ {\begin{array}{*{20}{c}}{x + y = 600}\\{8x + 9y = 5150}\end{array}} \right.\)
Từ phương trình (1), ta có: \(y = 600 - x\).
Thế \(y = 600 - x\) vào phương trình (2), ta được: \(8x + 9\left( {600 - x} \right) = 5150\)
Giải phương trình (3):
\(\begin{array}{*{20}{c}}{8x + 9\left( {600 - x} \right)\; = 5150\,\,\,\,}\\{8x + 5400 - 9x\; = 5150\,\,\,\,\,}\\{ - x + 5400\; = 5150\,\,\,\,\,\,\,\,\,\,\,\,\,}\\{x\; = 250}\end{array}\)
Thay \(x = 250\) vào phương trình \(y = 600 - x\), ta có:
Do đó, phương trình đã cho có nghiệm duy nhất \(\left( {x;y} \right) = \left( {250;350} \right)\).
Vậy số tiền mà cửa hàng đã vay từ ngân hàng \({\rm{A}},{\rm{B}}\) lần lượt là 250 triệu đồng, 350 triệu đồng.
Lời giải
Gọi \(x\) (đồng) là giá niêm yết của một cái quạt điện, \(y\) (đồng) là giá niêm yết của một cái bàn ủi điện \(({\rm{x}} > 0,{\rm{y}} > 0)\).
Tổng số tiền theo giá niêm yết của hai sản phẩm là 900000 đồng, nên ta có phương trình: \(x + y = 900000\).(1)
Tổng số tiền của hai sản phẩm sau khi đã giảm giá là 780000 đồng, nên ta có phương trình: \(0,85x + 0,9y = 780000\)(2)
Từ (1) và \((2)\), ta có hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{x + y = 900000}\\{0,85x + 0,9y = 780000.}\end{array}} \right.\)
Giải hệ phương trình, ta được \(x = 600000,y = 300000\) (thoả mãn).
Vậy giá niêm yết của một cái quạt điện là 600000 đồng, giá niêm yết của một cái bàn ủi điện là 300000 đồng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đề thi minh họa TS vào 10 năm học 2025 - 2026_Môn Toán_Tỉnh Đắk Lắk
123 bài tập Nón trụ cầu và hình khối có lời giải
50 bài tập Một số yếu tố xác suất có lời giải
Đề thi tham khảo môn Toán vào 10 tỉnh Quảng Bình năm học 2025-2026
Đề thi minh họa (Dự thảo) TS vào 10 năm học 2025 - 2026_Môn Toán_Tỉnh Đồng Nai
Đề thi minh họa TS vào 10 năm học 2025 - 2026_Môn Toán_TP Hà Nội
Đề thi thử TS vào 10 (Lần 2 - Tháng 2) năm học 2025 - 2026_Môn Toán_THCS Hoằng Thanh_Tỉnh Thanh Hóa
Đề thi tham khảo TS vào 10 năm học 2025 - 2026_Môn Toán_Tỉnh Bình Phước
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận