Hai khối hợp kim có tỉ lệ đồng và kẽm khác nhau: Khối thứ nhất có tỉ lệ đồng và kẽm là \[8:2\]và khối thứ hai có tỉ lệ đồng và kẽm là\[3:7\], được đưa vào lò để luyện ra khối hợp kim có khối lượng 250 kg và có tỉ lệ đồng và kẽm là \[5:5\]. Tính khối lượng mỗi khối hợp kim. (Biết rằng, khối lượng hao hụt và khối lượng các tạp chất không đáng kể).
Hai khối hợp kim có tỉ lệ đồng và kẽm khác nhau: Khối thứ nhất có tỉ lệ đồng và kẽm là \[8:2\]và khối thứ hai có tỉ lệ đồng và kẽm là\[3:7\], được đưa vào lò để luyện ra khối hợp kim có khối lượng 250 kg và có tỉ lệ đồng và kẽm là \[5:5\]. Tính khối lượng mỗi khối hợp kim. (Biết rằng, khối lượng hao hụt và khối lượng các tạp chất không đáng kể).
Quảng cáo
Trả lời:
Khối thứ nhất có đồng chiếm tỉ lệ: \(\frac{8}{{10}} = 80\% \).
Khối thứ hai có đồng chiếm tỉ lệ: \(\frac{3}{{10}} = 30\% \).
Khối hợp kim sau luyện có đồng chiếm tỉ lệ: \(\frac{5}{{10}} = 50\% \).
Gọi \({\rm{x}}({\rm{kg}})\) và \({\rm{y}}({\rm{kg}})\) lần lượt là khối lượng khối hợp kim thứ nhất và khối hợp kim thứ hai \((0 < x,y < 250)\).
Ta có hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{x + y = 250}\\{80\% x + 30\% y = 50\% (x + y)}\end{array}} \right.\) hay \(\left\{ {\begin{array}{*{20}{l}}{x + y = 250}\\{3x - 2y = 0.}\end{array}} \right.\)
Giải hệ phương trình, ta được \({\rm{x}} = 100,{\rm{y}} = 150\) (thoả mãn).
Vậy khối hợp kim thứ nhất có khối lượng 100 kg, khối hợp kim thứ hai có khối lượng 150 kg.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(x\) (triệu đồng), \(y\) (triệu đồng) lần lượt là số tiền mà cửa hàng đã vay từ ngân hàng A, \({\rm{B}}(x > 0,y > 0)\).
Theo giả thiết, ta có phương trình: \(x + y = 600\).
Mặt khác, ta có phương trình: \(8{\rm{\% }} \cdot x + 9{\rm{\% }} \cdot y = 51,5\) hay \(8x + 9y = 5150\).
Ta có hệ phương trình: \(\left\{ {\begin{array}{*{20}{c}}{x + y = 600}\\{8x + 9y = 5150}\end{array}} \right.\)
Từ phương trình (1), ta có: \(y = 600 - x\).
Thế \(y = 600 - x\) vào phương trình (2), ta được: \(8x + 9\left( {600 - x} \right) = 5150\)
Giải phương trình (3):
\(\begin{array}{*{20}{c}}{8x + 9\left( {600 - x} \right)\; = 5150\,\,\,\,}\\{8x + 5400 - 9x\; = 5150\,\,\,\,\,}\\{ - x + 5400\; = 5150\,\,\,\,\,\,\,\,\,\,\,\,\,}\\{x\; = 250}\end{array}\)
Thay \(x = 250\) vào phương trình \(y = 600 - x\), ta có:
Do đó, phương trình đã cho có nghiệm duy nhất \(\left( {x;y} \right) = \left( {250;350} \right)\).
Vậy số tiền mà cửa hàng đã vay từ ngân hàng \({\rm{A}},{\rm{B}}\) lần lượt là 250 triệu đồng, 350 triệu đồng.
Lời giải
Gọi \(x\) (đồng) là giá niêm yết của một cái quạt điện, \(y\) (đồng) là giá niêm yết của một cái bàn ủi điện \(({\rm{x}} > 0,{\rm{y}} > 0)\).
Tổng số tiền theo giá niêm yết của hai sản phẩm là 900000 đồng, nên ta có phương trình: \(x + y = 900000\).(1)
Tổng số tiền của hai sản phẩm sau khi đã giảm giá là 780000 đồng, nên ta có phương trình: \(0,85x + 0,9y = 780000\)(2)
Từ (1) và \((2)\), ta có hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{x + y = 900000}\\{0,85x + 0,9y = 780000.}\end{array}} \right.\)
Giải hệ phương trình, ta được \(x = 600000,y = 300000\) (thoả mãn).
Vậy giá niêm yết của một cái quạt điện là 600000 đồng, giá niêm yết của một cái bàn ủi điện là 300000 đồng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.