Câu hỏi:
12/04/2025 72
Chi phí để anh Hưng và ban nhạc của anh thu âm đĩa CD đầu tiên là 30 triệu đồng và mỗi đĩa CD sẽ có giá 8 nghìn đồng để sản xuất. Nếu ban nhạc bán đĩa CD của mình với giá 20 nghìn đồng mỗi đĩa thì phải bán bao nhiêu đĩa để hoà vốn (tức là doanh thu bằng với chi phí thu âm và sản xuất)?
Chi phí để anh Hưng và ban nhạc của anh thu âm đĩa CD đầu tiên là 30 triệu đồng và mỗi đĩa CD sẽ có giá 8 nghìn đồng để sản xuất. Nếu ban nhạc bán đĩa CD của mình với giá 20 nghìn đồng mỗi đĩa thì phải bán bao nhiêu đĩa để hoà vốn (tức là doanh thu bằng với chi phí thu âm và sản xuất)?
Quảng cáo
Trả lời:
Đổi: 30 triệu đồng = 30000 nghìn đồng.
Gọi \(x\) là số lượng đĩa CD mà anh Hưng và ban nhạc của anh cần bán để hoà vốn.
Khi đó, điều kiện của ẩn là \(x \in {\mathbb{N}^*}\).
Gọi \(y\) (nghìn đồng) là số tiền khi anh Hưng và ban nhạc hoà vốn. Khi đó, điều kiện của ẩn là \(y > 0\).
Số tiền anh Hưng và ban nhạc bỏ ra để thu âm và sản xuất \(x\) đĩa là \(30000 + 8x\) (nghìn đồng). Do đó, ta có phương trình \(y = 30000 + 8x\).
Mặt khác, doanh thu của ban nhạc khi bán hết \(x\) đĩa là\(20x\)(nghìn đồng). Do đó, ta có phương trình \(y = 20x\).
Ta có hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{y = 30000 + 8x}\\{y = 20x.}\end{array}} \right.\)
Thế hệ thức thứ hai vào phương trình thứ nhất trong hệ ta được \(20x = 30000 + 8x{\rm{ hay }}x = 2500.\)
Do đó, \(y = 50000\). Ta có \(x = 2500,y = 50000\) thoả mãn điều kiện của ẩn.
Vậy ban nhạc đó cần bán 2500 đĩa CD để hoà vốn và doanh thu khi hoà vốn là 50000 nghìn đồng, tức là 50 triệu đồng.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(x\) (triệu đồng), \(y\) (triệu đồng) lần lượt là số tiền mà cửa hàng đã vay từ ngân hàng A, \({\rm{B}}(x > 0,y > 0)\).
Theo giả thiết, ta có phương trình: \(x + y = 600\).
Mặt khác, ta có phương trình: \(8{\rm{\% }} \cdot x + 9{\rm{\% }} \cdot y = 51,5\) hay \(8x + 9y = 5150\).
Ta có hệ phương trình: \(\left\{ {\begin{array}{*{20}{c}}{x + y = 600}\\{8x + 9y = 5150}\end{array}} \right.\)
Từ phương trình (1), ta có: \(y = 600 - x\).
Thế \(y = 600 - x\) vào phương trình (2), ta được: \(8x + 9\left( {600 - x} \right) = 5150\)
Giải phương trình (3):
\(\begin{array}{*{20}{c}}{8x + 9\left( {600 - x} \right)\; = 5150\,\,\,\,}\\{8x + 5400 - 9x\; = 5150\,\,\,\,\,}\\{ - x + 5400\; = 5150\,\,\,\,\,\,\,\,\,\,\,\,\,}\\{x\; = 250}\end{array}\)
Thay \(x = 250\) vào phương trình \(y = 600 - x\), ta có:
Do đó, phương trình đã cho có nghiệm duy nhất \(\left( {x;y} \right) = \left( {250;350} \right)\).
Vậy số tiền mà cửa hàng đã vay từ ngân hàng \({\rm{A}},{\rm{B}}\) lần lượt là 250 triệu đồng, 350 triệu đồng.
Lời giải
Gọi \(v\) là vận tốc riêng của máy bay (tính bằng dặm/giờ) và \(w\) là vận tốc gió (tính bằng dặm/giờ). Khi đó, để vận tốc máy bay thắng vận tốc gió thì điều kiện của ẩn là \(v > w > 0\).
Khi máy bay đi từ Atlanta đến Paris (đi về phía đông), thời gian di chuyển là 8 giờ và khoảng cách là 4000 dặm, nên ta có phương trình\(v + w = \frac{{4000}}{8} = 500.\)
Khi máy bay đi từ Paris về Atlanta (đi về phía tây), thời gian di chuyển là 10 giờ và khoảng cách là 4000 dặm, nên ta có phương trình \(v - w = \frac{{4000}}{{10}} = 400.{\rm{ }}\)
Ta có hệ phương trình: \(\left\{ {\begin{array}{*{20}{l}}{v + w = 500}\\{v - w = 400.}\end{array}} \right.\)
Cộng từng vế hai phương trình của hệ ta được \(2v = 900\) hay \(v = 450\).
Thay giá trị này vào phương trình thứ nhất của hệ ta được \(w = 50\).
Ta có \(v = 450,w = 50\) thoả mãn điều kiện của ẩn.
Vậy vận tốc riêng của máy bay là 450 dặm/giờ và vận tốc gió là 50 dặm/giờ.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.