Hùng dự định chạy 4 km trong tuần tập luyện đầu tiên và tăng quãng đường chạy thêm 1 km mỗi tuần. Trong khi đó, Huy lại dự định sẽ bắt đầu chạy 1 km trong tuần đầu tiên và sau đó tăng thêm 2 km mỗi tuần. Hỏi ở tuần thứ bao nhiêu thì hai người có tổng quãng đường chạy là bằng nhau và quãng đường đó là bao nhiêu kilômét?
Hùng dự định chạy 4 km trong tuần tập luyện đầu tiên và tăng quãng đường chạy thêm 1 km mỗi tuần. Trong khi đó, Huy lại dự định sẽ bắt đầu chạy 1 km trong tuần đầu tiên và sau đó tăng thêm 2 km mỗi tuần. Hỏi ở tuần thứ bao nhiêu thì hai người có tổng quãng đường chạy là bằng nhau và quãng đường đó là bao nhiêu kilômét?
Quảng cáo
Trả lời:
Gọi số tuần sau tuần đầu tiên cho đến tuần mà hai người có độ dài quãng đường chạy bằng nhau (tính cả tuần mà hai người chạy với quãng đường bằng nhau) là \(n\) và quãng đường ở tuần thứ \(n + 1\) là \(d\). Khi đó, điều kiện của ẩn là \(n,d > 0;n,d \in \mathbb{N}\).
Từ kế hoạch của Hùng thì ta có phương trình là \(d = 4 + n\).
Mặt khác, từ kế hoạch của Huy ta có phương trình \(d = 1 + 2n\).
Ta có hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{d = 4 + n}\\{d = 1 + 2n}\end{array}} \right.\)
Từ đây, ta có \(4 + n = 1 + 2n\) hay \(n = 3\). Thay \(n = 3\) vào phương trình thứ nhất của hệ ta được \(d = 7\). Ta có \(n = 3,d = 7\) thoả mãn điều kiện của ẩn.
Vậy ở tuần thứ 4, hai người có tổng quãng đường chạy bằng nhau và bằng 7 km.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(x\) (triệu đồng), \(y\) (triệu đồng) lần lượt là số tiền mà cửa hàng đã vay từ ngân hàng A, \({\rm{B}}(x > 0,y > 0)\).
Theo giả thiết, ta có phương trình: \(x + y = 600\).
Mặt khác, ta có phương trình: \(8{\rm{\% }} \cdot x + 9{\rm{\% }} \cdot y = 51,5\) hay \(8x + 9y = 5150\).
Ta có hệ phương trình: \(\left\{ {\begin{array}{*{20}{c}}{x + y = 600}\\{8x + 9y = 5150}\end{array}} \right.\)
Từ phương trình (1), ta có: \(y = 600 - x\).
Thế \(y = 600 - x\) vào phương trình (2), ta được: \(8x + 9\left( {600 - x} \right) = 5150\)
Giải phương trình (3):
\(\begin{array}{*{20}{c}}{8x + 9\left( {600 - x} \right)\; = 5150\,\,\,\,}\\{8x + 5400 - 9x\; = 5150\,\,\,\,\,}\\{ - x + 5400\; = 5150\,\,\,\,\,\,\,\,\,\,\,\,\,}\\{x\; = 250}\end{array}\)
Thay \(x = 250\) vào phương trình \(y = 600 - x\), ta có:
Do đó, phương trình đã cho có nghiệm duy nhất \(\left( {x;y} \right) = \left( {250;350} \right)\).
Vậy số tiền mà cửa hàng đã vay từ ngân hàng \({\rm{A}},{\rm{B}}\) lần lượt là 250 triệu đồng, 350 triệu đồng.
Lời giải
Gọi \(x\) (đồng) là giá niêm yết của một cái quạt điện, \(y\) (đồng) là giá niêm yết của một cái bàn ủi điện \(({\rm{x}} > 0,{\rm{y}} > 0)\).
Tổng số tiền theo giá niêm yết của hai sản phẩm là 900000 đồng, nên ta có phương trình: \(x + y = 900000\).(1)
Tổng số tiền của hai sản phẩm sau khi đã giảm giá là 780000 đồng, nên ta có phương trình: \(0,85x + 0,9y = 780000\)(2)
Từ (1) và \((2)\), ta có hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{x + y = 900000}\\{0,85x + 0,9y = 780000.}\end{array}} \right.\)
Giải hệ phương trình, ta được \(x = 600000,y = 300000\) (thoả mãn).
Vậy giá niêm yết của một cái quạt điện là 600000 đồng, giá niêm yết của một cái bàn ủi điện là 300000 đồng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.