Câu hỏi:
13/04/2025 4,040
Một tháp đồng hồ có phần dưới có dạng hình hộp chữ nhật, đáy là hình vuông có cạnh dài 5 m, chiều cao của hình hộp chữ nhật là 12 m. Phần trên của tháp có dạng hình chóp đều, các mặt bên là các tam giác cân chung đinh (hình vẽ). Mỗi cạnh bên của hình chóp dài 8 m.
a) Tính theo mét chiều cao của tháp đồng hồ? (làm tròn đến chữ số thập phân thứ nhất).
b) Cho biết thể tích của hình hộp chữ nhật được tính theo công thức \(V = S.h\), trong đó \(S\) là diện tích mặt đáy, \(h\) là chiều cao của hình hộp chữ nhật. Thể tích của hình chóp được tính theo công thức \(V = \frac{1}{3}\;S.h\), trong đó \(S\) là diện tích mặt đáy, \(h\) là chiều cao của hình chóp. Tính thể tích của tháp đồng hồ này? (Làm tròn đến hàng đơn vị).

b) Cho biết thể tích của hình hộp chữ nhật được tính theo công thức \(V = S.h\), trong đó \(S\) là diện tích mặt đáy, \(h\) là chiều cao của hình hộp chữ nhật. Thể tích của hình chóp được tính theo công thức \(V = \frac{1}{3}\;S.h\), trong đó \(S\) là diện tích mặt đáy, \(h\) là chiều cao của hình chóp. Tính thể tích của tháp đồng hồ này? (Làm tròn đến hàng đơn vị).
Câu hỏi trong đề: 123 bài tập Nón trụ cầu và hình khối có lời giải !!
Quảng cáo
Trả lời:
Suy ra \(O'C' = \frac{{A'C'}}{2} = \frac{{5\sqrt 2 }}{2}\;{\rm{m}}\).
Áp dụng định lí Pythagore cho \(\Delta {\rm{S}}O'C'\) vuông tại \({\rm{O'}}\) ta có:
\({\rm{S}}{C'^2} = {\rm{S}}{O'^2} + O'{C'^2} \Rightarrow {8^2} = {\rm{S}}{O'^2} + {\left( {\frac{{5\sqrt 2 }}{2}} \right)^2} \Rightarrow {\rm{S}}{O'^2} = \frac{{103}}{2} \Rightarrow SO' \approx 7,2\)
Vậy chiều cao của tháp khoảng \(19,2\;{\rm{m}}\).
b) Thể tích của hình hộp chữ nhật: \({V_1} = S \cdot h = 5 \cdot 5 \cdot 12 = 300\;{{\rm{m}}^3}\).
Thể tích của hình chóp: \({{\rm{V}}_2} = \frac{1}{3}\;{\rm{S}} \cdot {\rm{h}} = \frac{1}{3}5 \cdot 5 \cdot 7,2 = 60\;{{\rm{m}}^3}\).
Thể tích của tháp đồng hồ: \({\rm{V}} = {{\rm{V}}_1} + {{\rm{V}}_2} = 300 + 60 = 360\;{{\rm{m}}^3}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Diện tích tường được sơn khi lăn cây lăn sơn 1 vòng bằng diện tích xung quanh của hình trụ có bán kính \(0,05{\rm{ m}}\) và chiều cao \(0,23{\rm{ m}}\).
Diện tích xung quanh của hình trụ bằng:\({S_{xq}} = 2\pi rh = 2 \times 3,14 \times 0,05 \times 0,23 = 0,023\pi \) \(\left( {{{\rm{m}}^2}} \right)\)
Diện tích mỗi cây sơn có thể sơn được là \(1000 \times {S_{xq}} = 23\pi {\rm{ }}\left( {{{\rm{m}}^2}} \right)\).
Vì \(\frac{{100}}{{23\pi }} \approx 1,38\) nên số cây lăn sơn tối thiểu cần phải mua là \(2\) cây.
Lời giải
\[\begin{array}{l}{V_{\bf{B}}} = \pi {r^2}h = \pi {.3^2}.6 = 54\pi \\ \Rightarrow {V_B} = 3{V_A}\end{array}\]
Mà giá quầy hàng \[B\] gấp \[2\] lần giá quầy hàng \[A\]
Vậy bạn \[H\] nên mua bắp rang bơ ở quầy \[B\] thì có lợi hơn
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.