Câu hỏi:

13/04/2025 4,171

Một cái hộp đựng 6 viên bi đỏ và 4 viên bi xanh. Lấy lần lượt 2 viên bi từ cái hộp đó. Tính xác suất để viên bi được lấy lần thứ 2 là bi xanh.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Số cách lấy lần lượt 2 viên bi từ hộp là \(10.9 = 90\) (cách).

Nếu lần 1 lấy được bi đỏ và lần 2 lấy được bi xanh thì có \(6.4 = 24\) (cách).

Nếu lần 1 lấy được bi xanh và lần 2 cũng là bi xanh thì có \(4.3 = 12\) (cách).

Suy ra xác suất cần tìm là \(p = \frac{{\left( {24 + 12} \right)}}{{90}} = \frac{4}{{10}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Gọi quả bóng màu trắng là \(T\), quả bóng màu đỏ là , quả bóng màu vàng là \(V\):

Không gian mẫu: . Số phần tử của không gian mẫu: \(n\left( \Omega \right) = 4\).

b) Kết quả lấy ra có đúng 1 quả bóng màu đỏ là và nên \(n\left( {\rm{A}} \right) = 2\). Xác suất của biến cố \(A\) là: \(\frac{2}{4} = 0,5\)

Lời giải

Ta lập bảng:

             A

B

1

2

3

1

\(\left( {1;1} \right)\)

\(\left( {1;2} \right)\)

\(\left( {1;3} \right)\)

2

\(\left( {2;1} \right)\)

\(\left( {2;2} \right)\)

\(\left( {2;3} \right)\)

3

\(\left( {3;1} \right)\)

\(\left( {3;2} \right)\)

\(\left( {3;3} \right)\)

4

\(\left( {4;1} \right)\)

\(\left( {4;2} \right)\)

\(\left( {4;3} \right)\)

5

\(\left( {5;1} \right)\)

\(\left( {5;2} \right)\)

\(\left( {5;3} \right)\)

Mỗi ô trong bảng trên là một kết quả có thể. Các kết quả có thể này là đồng khả năng. Không gian mẫu là \[\Omega = \left\{ {\left( {1;1} \right);\left( {1;2} \right);\left( {1;3} \right);\left( {2;1} \right);\left( {2;2} \right);\left( {2;3} \right);\left( {3;1} \right);\left( {3;2} \right);\left( {3;3} \right);\left( {4;1} \right);\left( {4;2} \right);\left( {4;3} \right);\left( {5;1} \right);\left( {5;2} \right);\left( {5;3} \right)} \right\}\]gồm 15 phần tử.

b) Có 2 kết quả thuận lợi cho biến cố \(T\)\(\left( {3;2} \right)\)\(\left( {2;3} \right)\) nên \(P\left( {\;T} \right) = \frac{2}{{15}}\).

Các kết quả thuận lợi cho biến cố \(M\): Có 1 ô tích hai số bằng 1 là \(\left( {1;1} \right)\). Có 2 ô có tích hai số bằng 2 là \[\left( {1;2} \right);\left( {2;1} \right)\]. Có 2 ô có tích hai số bằng 3 là \(\left( {1;3} \right);\left( {3;1} \right)\). Có 2 ô có tích hai số bằng 4 là \(\left( {4;1} \right);\left( {2;2} \right)\). Do đó, có 7 kết quả thuận lợi cho biến cố M nên \(P\left( M \right) = \frac{7}{{15}}\).

Tích \(ab\) là số chẵn khi và chỉ khi trong cặp \(\left( {{\rm{a}};{\rm{b}}} \right)\) có ít nhất 1 số chẵn. Do đó, sẽ có 9 kết quả thuận lợi cho biến cố \(L\) nên \(P\left( L \right) = \frac{9}{{15}} = \frac{3}{5}\).

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay