Câu hỏi:
13/04/2025 1,017Tấm bìa cứng A hình tròn được chia thành 3 hình quạt có diện tích bằng nhau, đánh số 1; 2; 3 và tấm bìa cứng B hình tròn được chia thành 5 hình quạt có diện tích bằng nhau, đánh số 1; 2; 3; 4; 5 (xem hình vẽ). Trục quay của A và B được gắn mũi tên ở tâm. Bạn Bình quay tấm bìa A, bạn An quay tấm bìa B. Quan sát xem mũi tên dừng ở hình quạt nào trên hai tấm bìa.
a) Mô tả không gian mẫu của phép thử.
b) Tính xác suất của các biến cố sau:
T: “ Tích hai số ở hình quạt mà hai mũi tên chỉ vào bằng 6”;
M: “Tích hai số ở hình quạt mà hai mũi tên chỉ vào nhỏ hơn 5”
L: “Tích hai số ở hình quạt mà hai mũi tên chỉ vào là số chẵn”.
Câu hỏi trong đề: 50 bài tập Một số yếu tố xác suất có lời giải !!
Quảng cáo
Trả lời:
Ta lập bảng:
A B |
1 |
2 |
3 |
1 |
\(\left( {1;1} \right)\) |
\(\left( {1;2} \right)\) |
\(\left( {1;3} \right)\) |
2 |
\(\left( {2;1} \right)\) |
\(\left( {2;2} \right)\) |
\(\left( {2;3} \right)\) |
3 |
\(\left( {3;1} \right)\) |
\(\left( {3;2} \right)\) |
\(\left( {3;3} \right)\) |
4 |
\(\left( {4;1} \right)\) |
\(\left( {4;2} \right)\) |
\(\left( {4;3} \right)\) |
5 |
\(\left( {5;1} \right)\) |
\(\left( {5;2} \right)\) |
\(\left( {5;3} \right)\) |
Mỗi ô trong bảng trên là một kết quả có thể. Các kết quả có thể này là đồng khả năng. Không gian mẫu là \[\Omega = \left\{ {\left( {1;1} \right);\left( {1;2} \right);\left( {1;3} \right);\left( {2;1} \right);\left( {2;2} \right);\left( {2;3} \right);\left( {3;1} \right);\left( {3;2} \right);\left( {3;3} \right);\left( {4;1} \right);\left( {4;2} \right);\left( {4;3} \right);\left( {5;1} \right);\left( {5;2} \right);\left( {5;3} \right)} \right\}\]gồm 15 phần tử.
b) Có 2 kết quả thuận lợi cho biến cố \(T\) là \(\left( {3;2} \right)\) và \(\left( {2;3} \right)\) nên \(P\left( {\;T} \right) = \frac{2}{{15}}\).
Các kết quả thuận lợi cho biến cố \(M\): Có 1 ô tích hai số bằng 1 là \(\left( {1;1} \right)\). Có 2 ô có tích hai số bằng 2 là \[\left( {1;2} \right);\left( {2;1} \right)\]. Có 2 ô có tích hai số bằng 3 là \(\left( {1;3} \right);\left( {3;1} \right)\). Có 2 ô có tích hai số bằng 4 là \(\left( {4;1} \right);\left( {2;2} \right)\). Do đó, có 7 kết quả thuận lợi cho biến cố M nên \(P\left( M \right) = \frac{7}{{15}}\).
Tích \(ab\) là số chẵn khi và chỉ khi trong cặp \(\left( {{\rm{a}};{\rm{b}}} \right)\) có ít nhất 1 số chẵn. Do đó, sẽ có 9 kết quả thuận lợi cho biến cố \(L\) nên \(P\left( L \right) = \frac{9}{{15}} = \frac{3}{5}\).
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một cái hộp đựng 6 viên bi đỏ và 4 viên bi xanh. Lấy lần lượt 2 viên bi từ cái hộp đó. Tính xác suất để viên bi được lấy lần thứ 2 là bi xanh.
Câu 2:
Hộp thứ nhất đựng 1 quả bóng trắng, 1 quả bóng đỏ. Hộp thứ 2 đựng 1 quả bóng đỏ, 1 quả bóng vàng. Lấy ra ngẫu nhiên từ mỗi hộp 1 quả bóng.
a) Xác định số phần tử của không gian mẫu ?
b) Biết rằng các quả bóng có cùng kích thước và cùng khối lượng. Hãy tính xác suất của biến cố A: “Có đúng một quả bóng màu đỏ trong 2 quả bóng lấy ra”.
Câu 3:
Một hộp chứa 4 tấm thẻ cùng loại được đánh số 1; 4; 7; 9. Bạn Khuê và bạn Hương lần lượt mỗi người lấy ra 1 tấm thẻ từ hộp. Tính xác suất của mỗi biến cố sau:
A: “Tích các số ghi trên 2 tấm thẻ là số lẻ”;
B: “Tổng các số ghi trên 2 tấm thẻ là số lẻ”;
C: “Số ghi trên tấm thẻ của bạn Khuê nhỏ hơn số ghi trên tấm thẻ của bạn Hương”.
Câu 4:
Một hộp chứa 5 quả bóng màu đỏ và một số quả bóng màu trắng. Các quả bóng có khối lượng và kích thước như nhau. Lấy ngẫu nhiên một quả bóng từ hộp, xem màu rồi trả lại hộp. Biết xác suất biến cố: “Lấy ra được 1 quả bóng màu trắng” có xác suất là 0,75. Tính số quả bóng màu trắng có trong hộp.
Câu 5:
Tổ 1 của lớp 9 A có 12 học sinh, trong đó có 8 học sinh thích môn Toán và 7 học sinh thích môn Văn. Tính xác suất chọn ra 1 em học sinh bất kỳ vừa thích môn Văn, vừa thích môn Toán.
Câu 6:
Bạn An đến một hội chợ được tổ chức gần nhà trong dịp tết Nguyên Đán. Bạn tham gia trò chơi ném bi. Đích đến là một bảng có 25 ô như hình vẽ.
5 |
3 |
3 |
3 |
5 |
3 |
\( - 2\) |
\( - 1\) |
\( - 2\) |
3 |
3 |
\( - 1\) |
5 |
\( - 1\) |
3 |
3 |
\( - 2\) |
\( - 1\) |
\( - 2\) |
3 |
5 |
3 |
3 |
3 |
5 |
Cách tính điểm như sau:
* Ném ra ngoài bảng trừ 5 điểm.
* Ném vào một trong 25 ô điểm tính được ghi như hình bên.
* Nếu sau 10 lần ném mà:
- Đạt 50 điểm thì nhận được phần quà trị giá 500000 đồng.
- Đạt từ 30 điểm đến 49 điểm thì nhận được phần quà trị giá 300000 đồng.
- Đạt từ 15 điểm đến 29 điểm thì nhận được phần quà trị giá 50000 đồng.
- Dưới 15 điểm không có quà.
a) Trong 9 lần ném bi, bạn An ném được 5 lần vào ô điểm 5, một lần ra ngoài bảng, 2 lần vào ô điểm 3, một lần ô điểm -1 . Tính số điểm bạn An nhận được sau 9 lần ném.
b) Hỏi bạn An có cơ hội nhận phần quà trị giá 300000 không? Nếu có thì bạn An phải ném vào ô nào? Tính xác suất để bạn An nhận được phần quà đó.
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 01
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Bộ 10 đề thi cuối kì 2 Toán 9 Chân trời sáng tạo có đáp án (Đề số 1)
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
Bộ 5 đề thi giữa kì 2 Toán 9 Kết nối tri thức có đáp án - Đề 01
Đề thi minh họa TS vào 10 năm học 2025 - 2026_Môn Toán_Tỉnh Đắk Lắk
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận