Câu hỏi:
13/04/2025 1,953Một hộp chứa 5 quả bóng màu đỏ và một số quả bóng màu trắng. Các quả bóng có khối lượng và kích thước như nhau. Lấy ngẫu nhiên một quả bóng từ hộp, xem màu rồi trả lại hộp. Biết xác suất biến cố: “Lấy ra được 1 quả bóng màu trắng” có xác suất là 0,75. Tính số quả bóng màu trắng có trong hộp.
Câu hỏi trong đề: 50 bài tập Một số yếu tố xác suất có lời giải !!
Quảng cáo
Trả lời:
Số kết quả thuận lợi của biến cố này là \(n\). Ta có: \(\frac{n}{{n + 5}} = 0,75 \Rightarrow 4n = 3n + 15 \Rightarrow n = 15\).
Vậy số quả bóng màu trắng có trong hộp là 15. Số kết quả thuận lợi của biến cố này là \(n\).
Ta có: \(\frac{n}{{n + 5}} = 0,75 \Rightarrow 4n = 3n + 15 \Rightarrow n = 15\). Vậy số quả bóng màu trắng có trong hộp là 15 .
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Gọi quả bóng màu trắng là \(T\), quả bóng màu đỏ là , quả bóng màu vàng là \(V\):
Không gian mẫu: . Số phần tử của không gian mẫu: \(n\left( \Omega \right) = 4\).
b) Kết quả lấy ra có đúng 1 quả bóng màu đỏ là và nên \(n\left( {\rm{A}} \right) = 2\). Xác suất của biến cố \(A\) là: \(\frac{2}{4} = 0,5\)
Lời giải
Số cách lấy lần lượt 2 viên bi từ hộp là \(10.9 = 90\) (cách).
Nếu lần 1 lấy được bi đỏ và lần 2 lấy được bi xanh thì có \(6.4 = 24\) (cách).
Nếu lần 1 lấy được bi xanh và lần 2 cũng là bi xanh thì có \(4.3 = 12\) (cách).
Suy ra xác suất cần tìm là \(p = \frac{{\left( {24 + 12} \right)}}{{90}} = \frac{4}{{10}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
123 bài tập Nón trụ cầu và hình khối có lời giải
Đề thi minh họa TS vào 10 năm học 2025 - 2026_Môn Toán_Tỉnh Đắk Lắk
50 bài tập Một số yếu tố xác suất có lời giải
Đề thi tham khảo môn Toán vào 10 tỉnh Quảng Bình năm học 2025-2026
Đề thi tham khảo TS vào 10 năm học 2025 - 2026_Môn Toán_TP Phú Thọ
Đề thi minh họa TS vào 10 năm học 2025 - 2026_Môn Toán_TP Hà Nội
54 bài tập Hàm số bậc hai và giải bài toán bằng cách lập phương trình có lời giải
Đề thi thử TS vào 10 (Tháng 1) năm học 2025 - 2026_Môn Toán_THCS Cầu Giấy_Quận Cầu Giấy