Câu hỏi:

15/04/2025 80

Một cầu thủ sút bóng bị va vào mép bên trên của cầu môn và bị bật ngược trở lại. Biết cầu môn cao \[2,4\,\,{\rm{m}}\] và khoảng cách từ vị trí sút bóng đến chân cầu môn là \[25\,\,{\rm{m}}\]. Tính góc \[\alpha \] tạo bởi đường đi của quả bóng và mặt đất (kết quả làm tròn đến phút). 
C (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn D

C (ảnh 2)

+ Tam giác \[AHB\] vuông tại \[H\] có \[\tan A = \tan \alpha = \frac{{BH}}{{AH}} = \frac{{2,4}}{{25}} = \frac{{11}}{{125}}\] \[ \Rightarrow \alpha \approx {\rm{5}}^\circ 29'\].
Vậy góc tạo bởi đường đi của quả bóng và mặt đất là \[\alpha \approx {\rm{5}}^\circ 29'\].

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn D
Do Mặt đất là phương ngang nên \[\widehat {BCA} = 30^\circ \] và \[\widehat {BDA} = 60^\circ \].
Gọi \[x\](m/phút) là vận tốc xe máy, điều kiện \[x > 0\].
Vì xe máy đi từ \[C\] đến \[D\] trong \[6\] phút nên \[CD = 6x\,\,\left( {\rm{m}} \right)\]
Xét \[\Delta ABC\] vuông tại \[A\], áp dụng hệ thức giữa cạnh và góc nhọn trong tam giác ta có:
\[AC = AB.\,\cot \widehat {BCA} = AB.\,\cot {30^{\rm{o}}} = AB.\tan {60^{\rm{o}}} = \sqrt 3 AB\] (do \[\cot {30^{\rm{o}}} = \tan {60^{\rm{o}}}\]) \[\left( 1 \right)\]
Xét \[\Delta ABD\] vuông tại \[A\], áp dụng hệ thức giữa cạnh và góc nhọn trong tam giác ta có:
\[AD = AB.\,\cot \widehat {BDA} = AB.\,\cot {60^{\rm{o}}} = AB.\tan {30^{\rm{o}}} = \frac{{\sqrt 3 AB}}{3}\] (do \[\cot {60^{\rm{o}}} = \tan {30^{\rm{o}}}\]) \[\left( 2 \right)\]
Từ \[\left( 1 \right)\] và \[\left( 2 \right)\] suy ra \[AC - AD = AB\left( {\sqrt 3 - \frac{{\sqrt 3 }}{3}} \right) \Rightarrow CD = \frac{{2\sqrt 3 }}{3}AB\].
Xét tỉ số \[\frac{{AD}}{{CD}} = \frac{{\sqrt 3 AB}}{3}:\frac{{2\sqrt 3 }}{3}AB = \frac{1}{2} \Rightarrow AD = \frac{1}{2}CD = \frac{1}{2}.6x = 3x\,\,\left( {\rm{m}} \right)\]
Vậy thời gian để xe máy chạy từ \[D\] đến tòa nhà là \[\frac{{3x}}{x} = 3\] (phút).

Câu 2

Một chiếc thang có chiều dài từ chân lên đến nấc thang cuối là \[5\,\,{\rm{m}}\] được đặt vào thân cây cau như hình vẽ dưới đây, người ta đo được khoảng cách từ chân thang đến gốc cây cau là \[2,5\,\,{\rm{m}}\]. Tính góc \[\alpha \] tạo bởi thang và thân cây cau (làm tròn kết quả đến độ).
D (ảnh 1)

Lời giải

Chọn D
Ta có: \[\sin \alpha = \frac{{2,5}}{5} = \frac{1}{2}\]\[ \Rightarrow \alpha = 30^\circ \].
Vậy góc hợp bởi thang và thân cây cau là \[\alpha = 30^\circ \].

Câu 3

Tính chiều cao của tháp canh trong hình bên (kết quả làm tròn đến hàng phần trăm).

Tính chiều cao của tháp canh trong hình bên (kết quả làm tròn đến hàng phần trăm). (ảnh 1)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Cho tam giác \(ABC\)vuông tại \(A\), có \(\widehat B = 34^\circ \). Khi đó:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Tỉ số lượng giác của góc nào lớn hơn tỉ số lượng giác của góc \(45^\circ \)?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho \(\alpha \)là góc nhọn bất kì có \(\tan \alpha = \frac{1}{7}\), khi đó \(\cot \alpha \)bằng:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay