Câu hỏi:
15/04/2025 79
Hai bạn Việt và Nam cùng chơi thả diều trên một bãi đất phẳng, sợi dây diều của bạn Việt có độ dài \[100\,\,{\rm{m}}\] và dây diều tạo với phương ngang một góc \[{\rm{42}}^\circ \] còn sợi dây diều của bạn Nam có độ dài \[96\,\,{\rm{m}}\] và dây diều tạo với phương ngang một góc \[{\rm{45}}^\circ \]. Cho biết tầm mắt của cả hai bạn đều là \[1,55\,\,{\rm{m}}\] và coi các dây diều được thả hết và căng thẳng (tham khảo hình vẽ). Trong các kết luận sau, kết luận nào đúng? (làm tròn kết quả đến chữ số thập phân thứ hai).

Câu hỏi trong đề: 63 bài tập Tỉ số lượng giác và ứng dụng có lời giải !!
Quảng cáo
Trả lời:
Chọn B
Theo bài ra ta có \[MC = NB = 1,55\,\,{\rm{m}}\] và \[M'C' = N'B' = 1,55\,\,{\rm{m}}\].
+ Tam giác \[ANM\] vuông tại \[N\] nên \[AN = AM.\sin M\]
(áp dụng hệ thức giữa cạnh và góc nhọn trong tam giác vuông)
So với mặt đất thì diều của bạn Việt có độ cao là \[AB = AN + NB\]
\[ \Rightarrow AB = 100.\sin 42^\circ + 1,55 \approx 68,46\,\,\left( {\rm{m}} \right)\] \[\left( 1 \right)\]
+ Tam giác \[A'N'M'\] vuông tại \[N'\] nên \[A'N' = A'M'.\sin M'\]
(áp dụng hệ thức giữa cạnh và góc nhọn trong tam giác vuông)
So với mặt đất thì diều của bạn Nam có độ cao là \[A'B' = A'N' + N'B'\]
\[ \Rightarrow A'B' = 96.\sin 45^\circ + 1,55 \approx 69,43\,\,\left( {\rm{m}} \right)\] \[\left( 2 \right)\]
Từ \[\left( 1 \right)\] và \[\left( 2 \right)\] suy ra \[A'B' > AB\], hay diều của bạn Nam lên cao hơn diều của bạn Việt.
Vậy so với mặt đất thì diều của bạn Nam lên cao hơn diều của bạn Việt và cao hơn số mét là: \[69,43\, - 68,46\,\, = 0,97\,\,\left( {\rm{m}} \right)\].
Vậy so với mặt đất thì diều của bạn Nam lên cao hơn diều của bạn Việt và cao hơn \[0,97\,\,{\rm{m}}\].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Do Mặt đất là phương ngang nên \[\widehat {BCA} = 30^\circ \] và \[\widehat {BDA} = 60^\circ \].
Gọi \[x\](m/phút) là vận tốc xe máy, điều kiện \[x > 0\].
Vì xe máy đi từ \[C\] đến \[D\] trong \[6\] phút nên \[CD = 6x\,\,\left( {\rm{m}} \right)\]
Xét \[\Delta ABC\] vuông tại \[A\], áp dụng hệ thức giữa cạnh và góc nhọn trong tam giác ta có:
\[AC = AB.\,\cot \widehat {BCA} = AB.\,\cot {30^{\rm{o}}} = AB.\tan {60^{\rm{o}}} = \sqrt 3 AB\] (do \[\cot {30^{\rm{o}}} = \tan {60^{\rm{o}}}\]) \[\left( 1 \right)\]
Xét \[\Delta ABD\] vuông tại \[A\], áp dụng hệ thức giữa cạnh và góc nhọn trong tam giác ta có:
\[AD = AB.\,\cot \widehat {BDA} = AB.\,\cot {60^{\rm{o}}} = AB.\tan {30^{\rm{o}}} = \frac{{\sqrt 3 AB}}{3}\] (do \[\cot {60^{\rm{o}}} = \tan {30^{\rm{o}}}\]) \[\left( 2 \right)\]
Từ \[\left( 1 \right)\] và \[\left( 2 \right)\] suy ra \[AC - AD = AB\left( {\sqrt 3 - \frac{{\sqrt 3 }}{3}} \right) \Rightarrow CD = \frac{{2\sqrt 3 }}{3}AB\].
Xét tỉ số \[\frac{{AD}}{{CD}} = \frac{{\sqrt 3 AB}}{3}:\frac{{2\sqrt 3 }}{3}AB = \frac{1}{2} \Rightarrow AD = \frac{1}{2}CD = \frac{1}{2}.6x = 3x\,\,\left( {\rm{m}} \right)\]
Vậy thời gian để xe máy chạy từ \[D\] đến tòa nhà là \[\frac{{3x}}{x} = 3\] (phút).
Lời giải
Xét \[\Delta ABC\] vuông tại \[B\]
Áp dụng tỉ số lượng giác trong tam giác trong tam giác vuông ABC ta có
\[\tan C = \frac{{AB}}{{CB}}\], suy ra \[AB = BC \cdot \tan C\] hay \[AB = 5,8 \cdot \tan 60^\circ = 5,8 \cdot \sqrt 3 \approx 10,05\] (m)
Vậy chiều cao của tháp canh gần bằng \[10,05\] mét.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.