Câu hỏi:

15/04/2025 168

Để phục vụ việc di chuyển của khách hàng giữa các tầng hàng trong siêu thị, người chủ đầu tư thường cho lắp hệ thống thang cuốn tự động. Biết rằng thang cuốn có góc nghiêng là \[35^\circ \]so với phương ngang và tốc độ truyền là \[0,65\,\,{\rm{m/s}}\], khoảng cách giữa hai tầng liên tiếp là \[4,2\,\,{\rm{m}}\]. Hỏi một người khi bước vào thang cuốn và đứng yên thì cần bao nhiêu giây để có thể di chuyển từ tầng \[1\] lên tầng \[2\]? (làm tròn kết quả đến chữ số thập phân thứ nhất) 
D (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn A

D (ảnh 2)

Độ dài thang máy từ \[1\] lên tâng \[2\] là đoạn \[AB\].
+ Xét \[\Delta AHB\] vuông tại \[H\] có: \[\sin B = \frac{{AH}}{{AB}}\] \[ \Rightarrow AB = \frac{{AH}}{{\sin B}} = \frac{{4,2}}{{\sin 35^\circ }}\,\,\left( {\rm{m}} \right)\]
Vì thang máy có tốc độ truyền là \[0,65\,\,{\rm{m/s}}\] nên thời gian để một người di chuyển từ tầng \[1\] lên tầng \[2\] bằng thang cuốn là: \[\frac{{AB}}{{0,65}} = \frac{{4,2}}{{0,65.\sin 35^\circ }} \approx 11,3\] (giây).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn D
Do Mặt đất là phương ngang nên \[\widehat {BCA} = 30^\circ \] và \[\widehat {BDA} = 60^\circ \].
Gọi \[x\](m/phút) là vận tốc xe máy, điều kiện \[x > 0\].
Vì xe máy đi từ \[C\] đến \[D\] trong \[6\] phút nên \[CD = 6x\,\,\left( {\rm{m}} \right)\]
Xét \[\Delta ABC\] vuông tại \[A\], áp dụng hệ thức giữa cạnh và góc nhọn trong tam giác ta có:
\[AC = AB.\,\cot \widehat {BCA} = AB.\,\cot {30^{\rm{o}}} = AB.\tan {60^{\rm{o}}} = \sqrt 3 AB\] (do \[\cot {30^{\rm{o}}} = \tan {60^{\rm{o}}}\]) \[\left( 1 \right)\]
Xét \[\Delta ABD\] vuông tại \[A\], áp dụng hệ thức giữa cạnh và góc nhọn trong tam giác ta có:
\[AD = AB.\,\cot \widehat {BDA} = AB.\,\cot {60^{\rm{o}}} = AB.\tan {30^{\rm{o}}} = \frac{{\sqrt 3 AB}}{3}\] (do \[\cot {60^{\rm{o}}} = \tan {30^{\rm{o}}}\]) \[\left( 2 \right)\]
Từ \[\left( 1 \right)\] và \[\left( 2 \right)\] suy ra \[AC - AD = AB\left( {\sqrt 3 - \frac{{\sqrt 3 }}{3}} \right) \Rightarrow CD = \frac{{2\sqrt 3 }}{3}AB\].
Xét tỉ số \[\frac{{AD}}{{CD}} = \frac{{\sqrt 3 AB}}{3}:\frac{{2\sqrt 3 }}{3}AB = \frac{1}{2} \Rightarrow AD = \frac{1}{2}CD = \frac{1}{2}.6x = 3x\,\,\left( {\rm{m}} \right)\]
Vậy thời gian để xe máy chạy từ \[D\] đến tòa nhà là \[\frac{{3x}}{x} = 3\] (phút).

Câu 2

Tính chiều cao của tháp canh trong hình bên (kết quả làm tròn đến hàng phần trăm).

Tính chiều cao của tháp canh trong hình bên (kết quả làm tròn đến hàng phần trăm). (ảnh 1)

Lời giải

Chọn A
Xét \[\Delta ABC\] vuông tại \[B\]
Áp dụng tỉ số lượng giác trong tam giác trong tam giác vuông ABC ta có
\[\tan C = \frac{{AB}}{{CB}}\], suy ra \[AB = BC \cdot \tan C\] hay \[AB = 5,8 \cdot \tan 60^\circ = 5,8 \cdot \sqrt 3 \approx 10,05\] (m)
Vậy chiều cao của tháp canh gần bằng \[10,05\] mét.

Câu 3

Một chiếc thang có chiều dài từ chân lên đến nấc thang cuối là \[5\,\,{\rm{m}}\] được đặt vào thân cây cau như hình vẽ dưới đây, người ta đo được khoảng cách từ chân thang đến gốc cây cau là \[2,5\,\,{\rm{m}}\]. Tính góc \[\alpha \] tạo bởi thang và thân cây cau (làm tròn kết quả đến độ).
D (ảnh 1)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Tỉ số lượng giác của góc nào lớn hơn tỉ số lượng giác của góc \(45^\circ \)?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Cho tam giác \(ABC\)vuông tại \(A\), có \(\widehat B = 34^\circ \). Khi đó:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho \(\alpha \)là góc nhọn bất kì có \(\tan \alpha = \frac{1}{7}\), khi đó \(\cot \alpha \)bằng:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP